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Abstract

Large-scale 3D reconstruction is a challenging engineering problem. For any system
designed to address this problem, it is important to have these three capabilities: cor-
respondence in 3D, incremental processing, and surface generation. In this thesis, we
present an incremental, hypothesis-based approach to solving the large-scale 3D recon-
struction problem. Images with accurate camera pose information are used as input.
Our method begins with a systematic generation of correspondence hypotheses. For
each hypothesis, we estimate its hypothetical structure through a multi-image triangu-
lation process. Using the results of triangulation, a posterior probability for the validity
of each hypothesis is computed. The computation is based on how well the supporting
features match up in 3D space, and how many supporting features each hypothesis has.

The posterior probability is then used as a fitness measure for selecting the most probable
correspondence hypotheses. Hypotheses compete to gain the support of features. When
the probability of a hypothesis exceeds a certain level, the hypothesis is confirmed and
becomes a permanent 3D structural element. When the probability drops below a pre-
determined threshold, the hypothesis is eliminated. Based on confirmed vertices and
line segments, surface hypotheses are constructed. Confirmed surfaces provide visibility
constraints that are then used to eliminate unlikely feature correspondence hypotheses.
We assume that all surfaces of interest are planar and opaque. Results of reconstructing
buildings in the Technology Square from real and synthetic images are presented. The
observed run-time of the system is approximately a quadratic function of the number of
input features.
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Chapter 1

Introduction

It has long been recognized that automatic 3D reconstruction is an important enabling
technology for realistic, large-scale simulation /visualization of the world. Realism in sim-
ulation is enhanced by accurate modeling of the environment being simulated. To obtain
the requisite 3D models, a variety of computerized methods have been developed, rang-
ing from active methods such as laser scanning, structured lighting, to passive methods
such as structure from stereo, structure from motion, structure from texture/shading,
structure from contour/line-drawing, to combinations of techniques.

Despite tremendous research efforts, automatic acquisition of 3D models from
2D imagery remains a challenging problem. Most existing methods that operate on
real images still require a significant amount of human intervention. For a large-scale
project, the labor involved can be quite prohibitive. This impediment provides the main
motivation for the present thesis — to develop a fully automatic 3D reconstruction system
using visual images.

A typical reconstruction scenario encountered in our research is illustrated in Fig-

ure 1.1. The input to the system consists of several digitized images, taken with different



12 Introduction

camera positions and orientations. In this thesis, we shall refer to position, orientation
and other essential camera parameters collectively as the camera pose. Two of the three
input images are shown in Figures 1.1 (a) and (b). Significant line segment and vertex
features in the input images are extracted by an automatic process, and the results are
displayed in Figures 1.1 (c¢) and (d). Then through a triangulation process that com-
putes the intersection of features back-projected into 3D space, parts of the desired 3D
model are formed. In this thesis, we shall refer to feature back-projections as extrusions.

To recover 3D structure in the scene from 2D images, there are three general

problems:

1. Determination of camera pose — obtaining camera motion, relative camera pose,

or absolute camera pose for each image.

2. Computation of correspondence — matching image intensity, low-level features, or

high-level structures, from different images.

3. Construction of 3D descriptions — computing dense depth maps, connected line

segments, or surface-based/object-based models.

Depending on the problem formulation, these tasks may not be independent of one
another. In fact, solving one problem can simplify the task of another. For example, de-
termining reliable feature correspondences is often helpful for obtaining accurate camera
poses, and vice versa. Likewise, recovered high-level scene descriptions may be used to
improve the reliability of low-level feature correspondences, and vice versa. Managing
the interdependence of these sub-problems is a major challenge in 3D reconstruction

systems.
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