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ABSTRACT 

 
The Lumigraph is novel way of parameterizing all the light coming out of a scene. 
Traditional way of capturing Lumigraphs requires a camera mounted on a 
precision robotic gantry. This is an expensive solution that cannot be used to 
easily capture outdoor scenes. Recently, the idea of a Lumigraph Scanner was 
introduced. This is a inexpensive solution that consists of a portable scanner that 
would make capturing outdoor scenes possible. Scans from this scanner need to 
be processed before it can be used as input to a Lumigraph renderer. This paper 
presents a simple and straightforward process that would calculate the radial 
distortion coefficients and the intrinsic values of each lens of the Lumigraph 
Scanner. This makes it easy to capture Lumigraphs using a Lumigraph Scanner. It 
would therefore make it a viable alternative to the traditional method of capturing 
Lumigraphs. 

 

Thesis Supervisor: Leonard McMillan 
Title: Assistant Professor, MIT Electrical Engineering and Computer Science 
Department  



 3 
 

 
 

TABLE OF CONTENTS 

Table of Contents .........................................................................................................3 
List of Figures................................................................................................................4 
Acknowledgments.........................................................................................................5 
1. Introduction...............................................................................................................6 

1.1 Motivation.........................................................................................................6 
1.2 Background.......................................................................................................7 

1.2.1 The Lumigraph.......................................................................................7 
1.2.2 The Lumigraph Scanner Project...........................................................7 

1.3 Goal ...................................................................................................................8 
1.4 Thesis Outline ..................................................................................................8 

2. The Lumigraph Scanner.........................................................................................10 
2.1 Scanner Makeup.............................................................................................10 
2.2 Scans From the Lumigraph Scanner............................................................12 

3. Image Extraction.....................................................................................................16 
3.1 Image Extraction for Scans...........................................................................16 
3.2 Calculating Location of Images....................................................................16 
3.3 Extracting Images ..........................................................................................18 

4. Radial Undistortion.................................................................................................19 
4.1 Radial Distortion Equation...........................................................................19 
4.2 Finding Radial Distortion Coefficients for Scanned Images.....................20 

4.2.1 Colored Triangle Pattern.....................................................................20 
4.2.2 Square Grid Pattern .............................................................................21 
4.2.3 Finding Coefficients By Optimization...............................................23 

4.3 Radially Undistorting an Image ....................................................................24 
5. Calibration................................................................................................................26 

5.1 Scans Needed For Calibration......................................................................27 
5.2 Corner Detection ...........................................................................................29 
5.3 Calculating Camera Intrinsic Values ............................................................29 

6. Future Work............................................................................................................30 
6.1 No User Interaction for Radial Undistortion .............................................30 
6.2 Calculating Camera Extrinsic Values ...........................................................30 
6.3 Using Images As Input To Lumigraph Renderer.......................................31 

7. Conclusion...............................................................................................................32 
7.1 Summary .........................................................................................................32 
7.2 Achievements .................................................................................................33 

Bibliography.................................................................................................................34 
Appendix A..................................................................................................................35 

A.1 Image Extraction Source Code....................................................................35 
A.2 Radial Undistortion Source Code................................................................43 



 4 
 

 
 

LIST OF FIGURES 

Number Page 
Figure 1: Lumigraph Scanner.....................................................................................11 
Figure 2: Camera Mounted on a Precision Robotic Gantry...................................12 
Figure 3: Sample Scan.................................................................................................13 
Figure 4: Color Correction And Aspect Ratio Correction .....................................14 
Figure 5: All White Background And Calculated Locations..................................18 
Figure 6: Selecting two squares..................................................................................22 
Figure 7: 9 Horizontal and 9 Vertical Lines .............................................................23 
Figure 8: Comparison of Distorted and Undistorted Image..................................25 
Figure 9: Scan of Pattern Captured By Column 4...................................................27 
Figure 10: Pattern Captured By Lens 6-4.................................................................28 
Figure 11: Corners Marked on the Pattern ..............................................................29 

 



 5 
 

 
 

ACKNOWLEDGMENTS 

I would like to thank Professor Leonard McMillan for his guidance and support.  

I also wish to thank Jason Yang for being a great partner. Many thanks goes to 

Mike Bosse for letting me use some of his source code and for giving me Matlab 

pointers when I needed them. Same goes to Chris Buehler and Aaron Isaksen for 

all the help they have given me. 

I would also like to thank the Eyeshake Team, for understanding that I cannot 

spend 24 hours a day on the startup because I had to work on this Thesis. 

And of course, I would like to thank my parents for shaping me to be the way I 

am now. I really appreciate it. And last but not least, thanks Aileen for always 

supporting me through the good times and the bad times. 



 6

C h a p t e r  1  

1. INTRODUCTION 

1.1 Motivation 

Image-based rendering is a novel approach to computer graphics. Instead of 

creating images by rendering from models, the image-based rendering approach 

creates new images without needing to model the scene. This is done be using 

interpolation and morphing to create the pixels of the output image using the 

pixels from input images. 

The Lumigraph [Levoy96, Gortler96] is a very useful image-based rendering 

technique, but there are many disadvantages. The system needed to capture a 

Lumigraph is very expensive. Currently, only the computer graphics labs at 

Stanford and MIT have a Lumigraph capturing device. Most places either do not 

have the money and/or the space to put it. 

Another disadvantage is that the Lumigraph capturing device is too immobile to 

be able to capture outdoor scenes. So all the acquired Lumigraphs that are 

currently available are of indoor scenes. 

We wish to make a small and inexpensive Lumigraph capturing device. This 

would not only allow us to capture beautiful outdoor scenes, it would also make it 

affordable for everyone to conduct more Lumigraph related research.  
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1.2 Background 

1.2.1 The Lumigraph 

The concept of the Lumigraph was introduced by both Levoy and Hanrahan 

[Levoy96] and Gortler et al. [Gortler96]. Levoy and Hanrahan call their version a 

lightfield but the two techniques are very similar. The papers introduced the idea 

of 4D parameterizing of all the light coming out or going in to a scene. This 

approach samples the light going through two planes: the UV-plane and the ST-

plane. Once this information is captured, a novel scene can be rendered by 

interpolating the desired rays from the acquired images. The nice thing about this 

approach is that there is a very intuitive way to capture and store this 4D 

function. One just has to place cameras on the UV-plane and capture pictures of 

the ST-plane. Each pixel in each of the captured image would be a sample of a 

ray passing through the UV and ST plane. 

Using images of a scene as input, one can create images of the same scene from a 

different viewpoint. This is done by interpolating the pixels of the input images to 

produce the pixels of the output image. The advantage of this approach is that it 

could produce highly realistic images in real-time. This is because rendering time 

is only proportional to the image size, and not the scene complexity. 

1.2.2 The Lumigraph Scanner Project 

This paper ties closely to the Lumigraph Scanner project by Jason Yang. [Yang00] 

Yang has constructed a lightfield acquisition device based on a flat-bed scanner. 

We have focused on correcting the distortions visible in the images captured by 

this device. 
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Yang’s objective was to build an inexpensive and portable Lumigraph Scanner. 

The images that this scanner produces will need to be manipulated by software 

before it could be inputted into a Lumigraph renderer. This paper describes a 

simple way to radially undistort and calibrate the image array retrieved from the 

scans of the Lumigraph Scanner. 

1.3 Goal 

We need to extract the individual images from the scans, radially undistort these 

images, and calibrate the lenses of the Lumigraph Scanner. 

The goal is to do this with as little user interaction as possible. We also want to 

come up with a process that is simple and quick. This way, users can take a scan, 

apply this simple and quick process, and immediately see the results in a 

Lumigraph renderer. 

1.4 Thesis Outline 

Chapter 2 provides an overview of the Lumigraph Scanner. It also talks about the 

color correction that needs to be done on the scans. 

Chapter 3 describes the process of image extraction. Image extraction is basically 

the process of extracting the image array from the scans. 

Chapter 4 describes a simple radial undistortion method that can be used to find 

the radial distortion coefficients. 

Chapter 5 shows how we can apply an existing calibration routine to calibrate our 

images. 
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Chapter 6 describes any future work that needs to be done. 

And Chapter 7 concludes this paper with a summary of the whole process. 
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C h a p t e r  2  

2. THE LUMIGRAPH SCANNER 

The Lumigraph Scanner project introduces a new way to capture a Lumigraph. 

Instead of using a camera mounted on a precision robotic gantry, we can now use 

a simple scanner to capture Lumigraphs very easily. 

2.1 Scanner Makeup 

The Lumigraph Scanner is made up of a standard off-the-shelf flatbed scanner 

and an array of plastic lenses. The lenses used are just the top covers of “bug 

boxes”, which are the plastic boxes used for displaying insects. The lenses are 

glued together in an 8 by 11 array configuration and are affixed on top of the 

scanner. The scanner can then be used to capture Lumigraphs by turning it on 

the side and scanning an image of the scene. With the process presented in this 

paper, each scan create by this Lumigraph Scanner can be used as input to a 

Lumigraph renderer. 

There are many advantages of the Lumigraph Scanner over the traditional 

Lumigraph capture method, which uses a camera mounted on a precision robotic 

gantry. (See figure 2.) Since the Lumigraph Scanner uses an off-the-shelf scanner, 

it is definitely a much cheaper solution. In addition, the scanner (See figure 1.) is a 

much smaller device that can easily be used to capture outdoor scenes, which is 

hard for a mounted camera setup to capture. 

The disadvantage of the Lumigraph Scanner is that since each image is not taken 

by the same camera we would need to independently calibrate each of the lenses 
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(virtual cameras) separately. Also, since we have used short-focal length single-

lens optics, each image exhibits considerable radial distortion. The process of 

undistorting these images and calibrating the lenses could potentially be very 

tedious and take a long time. This paper presents a simple method to radially 

undistort and calibrate the individual images of the array. 

 

Figure 1: Lumigraph Scanner 
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Figure 2: Camera Mounted on a Precision 
Robotic Gantry 

2.2 Scans From the Lumigraph Scanner 

The scanned image will contain an 8 by 11 array of images of the scene. The scan 

would be composed of 88 circular images. Each image would correspond to the 

image of the scene taken by a virtual camera at that location. It would be as if 88 

different cameras were used to take an image of the scene at the same time. 

From figure 3, it is obvious that the scanned images cannot easily be used as-is 

for input to a Lumigraph renderer. There are problems with the color, the aspect 

ratio, and radial distortion. The image must also be split up into 88 separate 

images, each representing an image taken by the virtual camera associated with 

the lens on the scanner. As mentioned before, these images need to be separately 

calibrated because, unlike a single translated camera, we do not expect that the 

camera intrinsics would be the same for all the images. The first two photometric 
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problems can be easily fixed by using a standard image processing methods. For 

instance, Paint Shop Pro can be used to color correct the image and adjust its 

histogram. (See figure 4.) 

 

Figure 3: Sample Scan 



 14 

 

Figure 4: Color Correction And Aspect 
Ratio Correction 

However, before we can use this as input to a Lumigraph render, we must solve 

other geometric calibration problems. Essentially, any accurate model of a camera 

should provide a mapping from each point on the image place to a ray in space. 

The determination of this mapping is called geometric calibration. 

The central contribution of this thesis is a system for the geometric calibration of a 

multi-lens camera array. The following steps are required to solve this problem. 

First, the composite image must be segmented into individual image planes. 

Then, the image is corrected for non-linear geometric distortions common to 
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spherical lens systems. Finally, an idealized pin-hole camera model is determined 

for each sub-image of the array. 

Chapter 3 describes how images are extracted from scans. Chapter 4 describes 

how each image is radially undistorted. Chapter 5 describes how each image is 

calibrated. 
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C h a p t e r  3  

3. IMAGE EXTRACTION 

Images must be extracted from the image array in a consistent manner. This way 

the process can be repeated for different scenes in such a way that the extracted 

images correspond to different images taken by the same camera. 

3.1 Image Extraction for Scans 

If we knew the exact location of each image in the image array, then it would be 

easy to extract the images. For the scans taken by the Lumigraph Scanner, the 

locations of the images are approximately located on an 8 by 11 grid. The images 

might be a little off from the grid because the bug box lenses are mounted on the 

scanner using glue. This could lead to small holes between the lenses that would 

make the location of the images deviate from a perfect grid. 

3.2 Calculating Location of Images 

The problem now is to find the image location of each virtual camera in the scan. 

It is possible to manually figure out the locations for each of the 88 lenses, but 

this would be a very tedious task and it could take a long time. Therefore, we 

would like to come up with a solution that requires little or no user interaction. 

Fortunately, we would only need to do this calculation once for a given 

Lumigraph Scanner. This is because the image locations would be the same for 

each scan. 
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The solution that we came up with takes advantage of the fact that the locations 

of the images are very close to a grid, and the fact that the images consist of a 

circle that represents the border of the lens. The idea is very simple. Have the 

user specify the location of the grid that approximates the actual location. Then 

use a circle finding algorithm to find the exact location of each circle. The center 

and the radius of each circle would then be stored and used later on to extract the 

image that correspond to this virtual camera. 

It is best to use a scan of an all-white background. This way, the circle-finding 

algorithm would less likely err by finding a circle that is not the boundary circle. 

The implementation of this location calculation algorithm is written as a Matlab 

program. The circle calculation algorithm is just an implementation of the Hough 

Transform circle-finding algorithm. It searches for the circle in a 10-pixel range 

for the x, y, and radius value. 

We also provide a way for the user to manually specify the circle if the circle-

finding algorithm is unable to correctly locate the boundary of a lens. 

See Figure 5 for a scan of an all-white background and the location of the found 

boundary circles. 
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Figure 5: All White Background And 
Calculated Locations 

3.3 Extracting Images 

Once the image locations are calculated, images can be easily extracted. Since we 

would know the center and the radius of the circle that corresponds to the 

boundary of the corresponding lens, all the pixels within this circle would belong 

in the extracted image. 

The implementation of this part is also written as a Matlab program. This 

program takes as input the scan image and the location file, and for each center 

and radius value in the location file, it would extract the circular image and create 

a new image file. See Appendix A for the Matlab code. 
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C h a p t e r  4  

4. RADIAL UNDISTORTION 

One the most common visual distortion of images seen through a lens is radial 

distortion. This occurs because the magnification of the lenses is different at the 

edge of the lenses versus the center of the lenses. There are two kinds of radial 

distortion: pincushion and barrel. Like their names suggest, pin-cushion radial 

distortion distorts a square object into pin-cushion shaped object, while barrel 

radial distortion distorts a square object into more of a barrel shaped object. 

4.1 Radial Distortion Equation 

Radial distortion just means that each point is radially distorted from a certain 

point, that we call the center of radial distortion. 

Radial distortion is governed by the equation: [Weng92] 

r’ = r + k1r3 + k2r5 + k3r7 + ... 

But according to Tsai [Tsai87], for practical purposes, we can safely approximate 

the radial distortion equation by using only the first term of the infinite series. So 

for this thesis, we use this simplified radial distortion equation:  

r’ = r + kr3 

r’ is the distorted radius and r is the original radius. k is the coefficient of radial 

distortion. This shows that the coefficient k affects how much a point is radially 
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distorted. The sign of k affects the type of radial distortion. If k is negative, it is a 

barrel radial distortion. If k is positive, it is a pincushion radial distortion. 

In order to undistort an image, we need to find three variables: the x and y values 

of the center of radial distortion and the coefficient of radial distortion, k. 

4.2 Finding Radial Distortion Coefficients for Scanned Images 

Since each lens on the Lumigraph Scanner is different, the radial distortion 

parameter for each sub-image would vary. We need to calculate the radial 

distortion coefficients for each of the 8 by 11 images. It is important that our 

radial undistortion algorithm requires little or no user involvement. We came up 

with a simple algorithm to undistort images that requires very little user 

interaction. 

The idea is that straight lines in real life should remain as straight lines in an 

image. This is because the image just shows a projection of the scene onto the 

image plane, and a projection matrix will always preserve straight lines. Radial 

distortion will tend to curve straight lines. So if we can detect lines that should be 

straight in the images, then we can use an optimization routine to try to find the 

distortion coefficients that will make these lines straight. 

4.2.1 Colored Triangle Pattern 

We need to come up with a pattern that makes detecting lines easy. Originally we 

came up with a pattern that had 5 differently colored straight lines that forms a 

star. We would then take a picture of this pattern and use a color separating 

method to extract the pixels that belong to each line. We can then try to 

straighten out these lines. As it turned out, the colors in the scanned image vary 

too much from the expected color. So the color separating method yielded too 
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many error pixels. We had to give up this approach and find a better pattern to 

use. 

4.2.2 Square Grid Pattern 

Our second approach was a little different. Instead of trying to detect lines, we 

would detect objects. The pattern we used is a 9 by 9 grid of squares. We chose to 

use this pattern mainly because it is the same pattern used by the calibration 

process described in Chapter 5. This way, we would save some work by being 

able to use the same scans to do both radial undistortion and calibration. 

In order to locate the grid in the image, we need to find the squares. This is done 

using a standard connected components labeling algorithm, specifically the bwlabel 

function in Matlab. But before we can apply bwlabel to the image, we must first 

make sure that the image has the square objects separated from the background. 

This is done using a threshold algorithm created by Michael Bosse that separates 

objects from background based on local edge intensities. See Appendix A for the 

Matlab source code. 

Once the square objects are located, we need to pinpoint the 9 by 9 grid. To do 

this, we require the user to specify two of the squares next to each other. The 

user just needs to click on the two squares. (See Figure 7.) This helps the program 

figure out the size of the square and the location and orientation of the grid. 

The program would then recursively move outwards from one of the two 

selected squares in all four directions to find the whole grid of squares. The 

Matlab source code can be found in Appendix A. 
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Figure 6: Selecting two squares 

Once the grid of squares is located, we can calculate the location of the centroid 

of each square. Since we know that the squares lie on a grid, the centroids of the 

squares must also lie on a grid. This would means these centroids are actually 

points that lie on a group of straight lines. Specifically, there are 18 lines, 9 vertical 

and 9 horizontal, which we know should be straight. Each line is made up of 9 

points. See Figure 6. 
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Figure 7: 9 Horizontal and 9 Vertical 
Lines 

4.2.3 Finding Coefficients By Optimization 

Once the points of the lines are found, we can just use a least square non-linear 

optimization algorithm to fit these 18 horizontal and vertical lines into straight 

lines. The initial guess at k, the radial distortion coefficient, is 0. And the initial 

guess at the center of radial distortion is just the center of the image. The least 

square non-linear optimization algorithm we used is the lsqnonlin function in 

MATLAB. And we also used a standard line-fitting algorithm to fit the points to 

a straight line. The deviation of the points from the best-fit line is used as the 

error values to the lsqnonlin function. This optimization routine finishes in about 

50 iterations and finds the radial distortion coefficient and the center of radial 

distortion. 
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As mentioned before, the process of finding these coefficients needs to be 

repeated for each of the 88 images. This whole process is done once per 

Lumigraph Scanner, because images in each successive scan should be radially 

distorted the same way. 

4.3 Radially Undistorting an Image 

To radially undistort an image, we just bi-linearly interpolate the mapped points in 

the distorted image and copy them to the undistorted image. 

Specifically, we know that each point in the undistorted image corresponds to a 

point in the distorted image. So we just apply the radial distortion function to 

each point of the desired image to get the point in the distorted image it 

corresponds to. Specifically, these equations are used to calculate the distorted 

coordinates: 

)1)((' 2krcxxcxx +−+=  

)1)((' 2krcyycyy +−+=  

where 22 )()( cyycxxr −+−=  

The calculated points will be non-integer. Therefore, we would bi-linearly 

interpolate the four closest points in the distorted image and copy this pixel to the 

desired undistorted image. This process is applied to the whole image. Using 

Matlab, it is all done very simply using matrix manipulations. See Appendix A. for 

the code. Figure 8 shows an example of a distorted image and the undistorted 

version of it. 
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Figure 8: Comparison of Distorted and 
Undistorted Image 
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C h a p t e r  5  

  5. CALIBRATION 

Calibration is an important step in any computer graphics application that uses 

lenses/cameras. Lenses project a real world scene onto a flat image. This 

projection is different for each lens and it depends on many intrinsic values for 

the lens. Calibration is the process of finding these intrinsic values. Once we have 

found these values, we could figure out how the pixels in the image correspond 

to points in the real world. 

There have been many different proposed methods of calibration. Many of these 

methods require you to know the precise location of a few points in the real 

world. This is a very cumbersome task, and it also requires the use of a precise 

location-finder device, like a Faro arm, or a precision calibration object. This 

makes performing calibration inconvenient for someone without access to such a 

device. 

Zhang recently published a paper [Zhang99] describing a calibration method that 

is very easy to do and only requires software processing. This method needs at 

least two images of a planar pattern. This pattern consists of a 9 by 9 grid of 

squares, which we also used for the Radial Undistortion method described in 

Chapter 4. 

Zhang calculates the intrinsic values by using a close-form solution with a non-

linear refinement using maximum likelihood estimation. 
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We believe that Zhang’s calibration routine is very well suited for our needs. This 

would allow us to just take scans of the pattern and use software to calibrate all 

the lenses. 

 

Figure 9: Scan of Pattern Captured By 
Column 4 

5.1 Scans Needed For Calibration 

We decided to use 4 different images of the pattern for each lens: straight on, 

tilted left, tilted right, and tilted upwards. So for each of the lens on the 

Lumigraph Scanner, we would need 4 images taken by that lens of the pattern at 

these 4 different angles. Of course, we would like to get all these images with as 

few scans as possible. We were able to get all the lens of a certain column to see 

the whole pattern, (See Figure 9.) so this means we would only need to take 4 
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scans per column, or in other words, 32 scans. This is still quite a lot of scans, but 

it is a far less than 352 scans, which is the number of scans needed if we needed 

to take 4 scans for each lens. 

      

      

Figure 10: Pattern Captured By Lens 6-4 

See Figure 10 for the 4 scans from the lens on row 6, column 4. These are images 

before radial undistortion. We would actually first apply our radial undistort 

software (See Chapter 4.) to it before we calibrate them. 
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5.2 Corner Detection 

As required by Zhang’s method, we need to find the corner of each square in the 

grid. That is a total of 324 points. These corners are detected using a standard 

corner-detection software that finds the corner as the intersection of the straight 

lines that are the edges of the squares. The corner points are used because we can 

find the corner points with a sub-pixel level accuracy. Figure 11 shows an image 

that the corner-finding software produces. This image has the corners of all the 

squares marked. 

 

Figure 11: Corners Marked on the Pattern 

5.3 Calculating Camera Intrinsic Values 

The corner points are then used as input to the EasyCalib software that Zhang 

provides at ftp://ftp.research.microsoft.com/users/easycalib/EasyCalib.zip. 

The EasyCalib program calculates the les intrinsic values α, c, β, u0, and v0. It 

would also calculate the rotation and translation matrix for each of the input 

images. 
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C h a p t e r  6  

6. FUTURE WORK 

Although we have a working solution that requires little user interaction to 

radially undistort and calibrate an image array, there is still a lot of future work 

that can be done. 

6.1 No User Interaction for Radial Undistortion 

Currently the radial undistortion process requires a bit of user interaction to pick 

out two of the squares so that the system can find the rest of the squares in the 

grid. It would obviously be better if the system could figure out the location of 

the grid without any user interaction. This is possible, but we would need to 

come up with a way for the system to correctly locate the grid of squares in any 

given image. 

6.2 Calculating Camera Extrinsic Values 

At the time of this writing, we have not gotten a chance to calculate extrinsic 

values for the lenses. Extrinsic values specify the location of the lens relative to 

the other lenses. Extrinsic values are crucial if we need to know where our virtual 

cameras are located with respect to each other. 

We might be able to use Zhang’s algorithm to solve this problem. Since Zhang’s 

algorithm calculates the location of the camera relative to the planar grid of 

squares, if two lenses see the same planar grid, we will know the two lenses’ 
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rotation and translation matrix relative to the planar grid. We can then calculate 

the rotation and translation matrix from one lens to the other. We can do this 

repeatedly until we figure out the relative locations of all the lenses. This would 

definitely work for the lenses that lie in the same column, because already have 

scans in which the images in the same column all contain the planar grid. We 

have not yet captured scans that have two rows both containing the planar grid, 

but we do foresee any problems.  

Another approach would be to use the method published by Tsai [Tsai86] or 

something similar. 

6.3 Using Images As Input To Lumigraph Renderer 

The next step would be to use the undistorted and calibrated images as input to a 

Lumigraph Render. This would show whether or not the Lumigraph Scanner is 

indeed a viable alternative to the traditional Lumigraph capture method of using a 

camera mounted on a precision robotic gantry. 

Chris Buehler, of MIT’s Computer Graphics Lab, recently created a Lumigraph 

renderer that is very flexible in terms of the location and orientation of the 

cameras used to create the input images. Given the calibration data and the 

undistorted images, we believe we would have no difficulty in using Buehler’s 

Lumigraph render. 
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C h a p t e r  7  

7. CONCLUSION 

7.1 Summary 

This paper introduces a straightforward process, which can be applied to a scan 

from a Lumigraph Scanner in order to use it in Lumigraph renderer. 

First, the exact location of the lenses is found. This location calculation algorithm, 

which uses a circle-finding algorithm, is straightforward and requires the user to 

just specify where to look for the circles. This needs to be done only once, 

because the location of the lenses does not change for each successive scan. 

Next, the radial distortion coefficients of each image are estimated. This requires 

very little user interaction, and it can find the coefficients pretty efficiently. This 

also only needs to be done once, because the radial distortion coefficients for 

each lens should not change for each successive scan. 

Next, you need to use Zhang’s calibration method to calibrate each lens. This is a 

fairly tedious task, but it also only needs to be done once. 

Although not explored in this paper, you need to find the extrinsic values of the 

lenses by using Tsai’s method or something similar. 

Finally, for each scan you take, the software will extract each image, and apply the 

correct radial undistortion to each image. This requires no user interaction at all, 

because both the location of the lenses and the radial distortion coefficients are 
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previously calculated. So the software only needs to apply the image extraction 

procedure and then the radial undistortion procedure. The resultant images and 

the calibration data (which were previously calculate) can be plugged into a 

Lumigraph renderer so that you can view this captured scene from any location 

and orientation. 

7.2 Achievements 

We believe that our solution is a fairly simple and straightforward process. The 

initial calibration process would take some time though, because we need to 

calibrate all of the 88 lenses. Fortunately, we only need to do it once for each 

Lumigraph Scanner. After the calibration is complete, each successive scan would 

require no user interaction at all. This is very valuable, because once a Lumigraph 

Scanner is calibrated, capturing a Lumigraph using that Lumigraph Scanner will 

be very easy. 
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APPENDIX A 

A.1 Image Extraction Source Code 

PROG_FIND.M 
 
disp('Loading image...') 
 
Img = imread('NEW_WHITE.tif'); 
 
fit_all_circles; 
 

PROG_CONFIRM.M 
 

disp('Loading image...') 
 
Img = imread('NEW_WHITE.tif'); 
 
theta = linspace(0,2*pi,100); 
costheta = cos(theta); 
sintheta = sin(theta); 
 
fid = fopen('result.txt','r'); 
while (~feof(fid)) 
 j = fscanf(fid,'%d',1); 
 i = fscanf(fid,'%d',1); 
 x(j,i) = fscanf(fid,'%f',1); % top left x 
 y(j,i) = fscanf(fid,'%f',1); % top left y 
 lengthx(j,i) = fscanf(fid,'%f',1); % length x 
 lengthy(j,i) = fscanf(fid,'%f',1); % length y 
 sx(j,i) = fscanf(fid,'%f',1); % center x 
 sy(j,i) = fscanf(fid,'%f',1); % center y 
   sr(j,i) = fscanf(fid,'%f\n',1); % radius 
end 
fclose(fid); 
 
quit = 0; 
 
while(quit == 0) 
    
 % draw circles 
 imshow(Img); 
 for j=1:11 
  for i=1:8 
     hold on; plot(sx(j,i) + sr(j,i)*costheta, sy(j,i) 
+ sr(j,i)*sintheta, 'r'); hold off 
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     hold on; plot((sx(j,i)), (sy(j,i)), 'r+'); hold 
off 
    end 
   end 
   drawnow; 
    
 disp('Press a key when you have found a error or there 
is no more.') 
 pause 
 
 disp('If a circle you see is off, then click inside the 
circle') 
 disp('Otherwise click anywhere that is not inside any 
circle') 
 
 pt = ginput(1); 
 ptx = pt(1); 
 pty = pt(2); 
    
   jj = 0; 
   ii = 0; 
 for j=1:11 
      for i=1:8 
         if (((sx(j,i) - ptx)*(sx(j,i) - ptx) + (sy(j,i) - 
pty)*(sy(j,i) - pty)) < sr(j,i)*sr(j,i)) 
            [j,i] 
            jj = j; 
            ii = i; 
         end 
      end 
   end 
    
   if (jj~=0) 
  disp('Click on the top left point and bottom right 
point to define the new circle') 
  tl = ginput(1); 
  br = ginput(1); 
 
  tlx = tl(1); 
  tly = tl(2); 
  brx = br(1); 
    bry = br(2); 
    
    sx(jj,ii) = (tlx+brx)/2; 
    sy(jj,ii) = (tly+bry)/2; 
      sr(jj,ii) = (((brx-tlx)/2)+((bry-tly)/2))/2; 
       
   else 
      quit = 1; 
   end 
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end 
 
fidw = fopen('result-confirmed.txt','w'); 
for j=1:11 
 for i=1:8 
  fprintf(fidw,'%d %d %f %f %f %f %f %f %f\n', 
[j,i,x(j,i),y(j,i),lengthx(j,i),lengthy(j,i),sx(j,i),sy(j,i)
,sr(j,i)]); 
 end 
end 
fclose(fidw); 
 
disp('Written to result-confirmed.txt'); 

 
PROG_GET_REF_POINTS.M 
 

disp('Loading image...') 
 
Img = imread('NEW_WHITE.tif'); 
 
figure; 
imshow(Img); 
drawnow 
 
[tl, bl, tr, br] = find_four_points; 
 
fid = fopen('refpoints.txt','w'); 
 
fprintf(fid,'%f %f\n', [tl(1), tl(2)]); 
fprintf(fid,'%f %f\n', [bl(1), bl(2)]); 
fprintf(fid,'%f %f\n', [tr(1), tr(2)]); 
fprintf(fid,'%f %f\n', [br(1), br(2)]); 
 
fclose(fid); 

 
PROG_EXTRACT.M 
 

function prog_extract(name) 
 
mkdir(name); 
 
filename = strcat(name,'.tif'); 
 
 
% load ref points 
fid = fopen('refpoints.txt','r'); 
 
x = fscanf(fid,'%f',1); 
y = fscanf(fid,'%f',1); 
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ref_tl = [x y]; 
 
x = fscanf(fid,'%f',1); 
y = fscanf(fid,'%f',1); 
ref_bl = [x y]; 
 
x = fscanf(fid,'%f',1); 
y = fscanf(fid,'%f',1); 
ref_tr = [x y]; 
 
x = fscanf(fid,'%f',1); 
y = fscanf(fid,'%f',1); 
ref_br = [x y]; 
 
fclose(fid); 
% finish loading ref points 
 
 
disp('Loading image...') 
 
Img = imread(filename); 
figure; 
imshow(Img); 
drawnow; 
 
[tl, bl, tr, br] = find_four_points; 
 
% average the difference of the four points 
diff = ( (tl + bl + tr + br) - (ref_tl + ref_bl + ref_tr + 
ref_br) ) / 4 
 
%x_diff = (tl(1) - ref_tl(1) + bl(1) - ref_bl(1) + tr(1) - 
ref_tr(1) + br(1) - ref_br(1)) / 4 
%y_diff = (tl(2) - ref_tl(2) + bl(2) - ref_bl(2) + tr(2) - 
ref_tr(2) + br(2) - ref_br(2)) / 4 
 
disp('Resize so that you see all the lens'); 
pause 
 
fid = fopen('result.txt','r'); 
 
cd(name); 
 
theta = linspace(0,2*pi,100); 
costheta = cos(theta); 
sintheta = sin(theta); 
 
while (~feof(fid)) 
 j = fscanf(fid,'%d',1); 
 i = fscanf(fid,'%d',1); 
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 x = fscanf(fid,'%f',1); % top left x 
 y = fscanf(fid,'%f',1); % top left y 
 lengthx = fscanf(fid,'%f',1); % length x 
 lengthy = fscanf(fid,'%f',1); % length y 
 sx = fscanf(fid,'%f',1); % center x 
 sy = fscanf(fid,'%f',1); % center y 
   sr = fscanf(fid,'%f\n',1); % radius 
    
       
   cx = sx - x; 
   cy = sy - y; 
 
   % modify x,y to reflect the shift of the image 
   x = x + diff(1); 
   y = y + diff(2); 
   sx = sx + diff(1); 
   sy = sy + diff(2); 
    
   % draw the circle (adjusted) 
   hold on; plot(sx + sr*costheta, sy + sr*sintheta, 'r'); 
hold off 
   hold on; plot((sx), (sy), 'r+'); hold off 
   drawnow 
    
   if (y<0) 
      SubImg = uint8(zeros(round(lengthy), round(lengthx), 
3)); 
      SubImg(round(2.0-y):round(lengthy), 1:round(lengthx), 
:) = Img(1:round(y)+round(lengthy)-1, 
round(x):round(x)+round(lengthx)-1, :); 
   else 
      SubImg = Img(round(y):round(y)+round(lengthy)-1, 
round(x):round(x)+round(lengthx)-1, :); 
   end 
    
   outfile1 = strcat('img',int2str(j),'-
',int2str(i),'.tif'); 
    
   % now, mask it with a circle at sx,sy with radious sr 
    
   disp('Creating image...') 
    
   numpoints = 50; 
   increment = (2*pi)/numpoints; 
   angles = linspace(increment, 2*pi, numpoints); 
    
   col = cos(angles)*sr+cx; 
   row = sin(angles)*sr+cy; 
    
   bw = roipoly(SubImg,col,row); 
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   bw2 = SubImg; 
   bw2(:,:,1) = bw; 
   bw2(:,:,2) = bw; 
   bw2(:,:,3) = bw; 
    
 SubImg(bw2==0) = 0; 
    
   disp(strcat('Writing...',outfile1,'...')) 
 imwrite(SubImg, outfile1); 
end 
 
fclose(fid); 
 
cd('..'); 

 
FIND_FOUR_POINTS.M 
 

function [tl, bl, tr, br] = find_four_points() 
 
% Assumes image is already loaded and is displayed as a 
figure 
 
disp('Please resize window and zoom close to the top left 
point and press any key') 
pause 
disp('Click on the top left point') 
tl = ginput(1); 
 
disp('Please resize window and zoom close to the bottom left 
point and press any key') 
pause 
disp('Click on the bottom left point') 
bl = ginput(1); 
 
disp('Please resize window and zoom close to the top right 
point and press any key') 
pause 
disp('Click on the top right point') 
tr = ginput(1); 
 
disp('Please resize window and zoom close to the bottom 
right point and press any key') 
pause 
disp('Click on the bottom right point') 
br = ginput(1); 
 

FIT_ALL_CIRCLES.M 
 

figure; 
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imshow(Img); 
drawnow 
 
disp('This program assumes that the image array is 11x8') 
disp('Please resize window and zoom close to the 4 top left 
corner lens, and press a key') 
pause 
disp('Please pick the center of the 4 top left corner lens') 
tl = ginput(1); 
disp('Please resize window and zoom close to the 4 bottom 
right corner lens, and press a key') 
pause 
disp('Please pick the center of the 4 bottom right corner 
lens') 
br = ginput(1); 
 
disp('Please resize window so that everything is in view, 
and press a key') 
pause 
 
tlx = tl(1) 
tly = tl(2) 
brx = br(1) 
bry = br(2) 
 
lengthx = (brx-tlx)/6 
lengthy = (bry-tly)/9 
 
x = tlx - lengthx 
y = tly - lengthy 
 
theta = linspace(0,2*pi,100); 
costheta = cos(theta); 
sintheta = sin(theta); 
 
fid = fopen('result.txt','w'); 
for j=1:11 
 for i=1:8 
      disp(sprintf('Fitting circle (%d,%d)...', j, i)) 
       
      if (y<0) 
       SubImg = Img(1:round(y+lengthy-1), 
round(x):round(x+lengthx-1), :); 
      else 
         SubImg = Img(round(y):round(y+lengthy-1), 
round(x):round(x+lengthx-1), :); 
      end 
       
      [ex,ey,er] = fit_one_circle(SubImg); 
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      if (y<0) 
         sy = ey; 
      else 
         sy = y + ey - 1; 
      end 
      sx = x + ex - 1; 
      sr = er; 
       
  fprintf(fid,'%d %d %f %f %f %f %f %f %f\n', 
[j,i,x,y,lengthx,lengthy,sx,sy,sr]); 
       
      hold on; plot(sx + sr*costheta, sy + sr*sintheta, 
'r'); hold off 
      hold on; plot((sx), (sy), 'r+'); hold off 
      drawnow 
       
      x = x + lengthx; 
   end 
   x = tlx - lengthx; 
   y = y + lengthy; 
end 
fclose(fid); 
 
disp('Written to result.txt'); 

 
GRAD_IMG.M 
 

function E = grad_img(I); 
 
H = fspecial('sobel'); 
E = sqrt(filter2(H,I).^2+filter2(-H',I).^2); 

 
CIRCLE_HOUGH.M 
 

function Counts = circle_hough(I, cx_range, cy_range, 
r_range) 
 
ncx = length(cx_range); 
ncy = length(cy_range); 
nr = length(r_range); 
 
Counts = zeros([ncx ncy nr]); 
 
for i=1:nr 
   r=r_range(i); 
   theta = linspace(0,2*pi,round(2*pi*r)); 
   rcthe = r*cos(theta); 
   rsthe = r*sin(theta); 
    
   [CX,CY] = ndgrid(cx_range,cy_range); 
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   CX=CX(:); 
   CY=CY(:); 
   X = round(repmat(rcthe,length(CX),1) + 
repmat(CX,1,length(theta))); 
   Y = round(repmat(rsthe,length(CY),1) + 
repmat(CY,1,length(theta))); 
   good = find( X>0 & X < size(I,2) & Y > 0 & Y < size(I,1) 
); 
    
   ind = sub2ind(size(I),Y(good),X(good)); 
    
   Samples = zeros(size(X)); 
   Samples(good) = I(ind);  
   cnts = sum(Samples,2); 
   cnts = reshape(cnts, [ncx ncy]); 
    
%   imagesc(cnts),colorbar 
%   drawnow 
   Counts(:,:,i) = cnts; 
    
end 

A.2 Radial Undistortion Source Code 

PROG_UNDISTORT4.M 
 

function prog_undistort4(name) 
 
prog_undistort('cal0', name); 
prog_undistort('cal1', name); 
prog_undistort('cal2', name); 
prog_undistort('cal3', name); 

 
PROG_UNDISTORT.M 
 

function prog_undistort(DIR, name) 
 
IMAGE = strcat(name,'.tif'); 
OUTIMAGE = strcat(name,DIR,'.tif'); 
%BMPIMAGE = strcat(name,DIR,'.bmp'); 
 
% maximum size of grid 
GRID_SIZE = 20; 
THRESH_HOLD = 2; 
 
img = imread(strcat(DIR,'\\',IMAGE)); 
 
ss = size(size(img)); 
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if (ss(2)==2) 
   grayimg = img; 
else 
   grayimg = rgb2gray(img); 
end 
 
I = -double(grayimg); 
disp('thresholding image...') 
T = threshold_img(I,THRESH_HOLD); 
 
% guess the labels 
disp('labeling objects...') 
pts = label_objects(T); 
numplot(pts); 
 
% ask the user to pick two points 
colormap cool; 
imagesc(T); 
numplot(pts); 
disp('Please pick the center of 2 squares that are side by 
side to each other') 
two_points = ginput(2); 
 
% find the closest pts to the ones the user selected 
D = sqdist(pts(:,1:2)',two_points'); 
[val, marker_ind] = min(D); 
 
% calculate min and max areas for the circles 
point1 = pts(marker_ind(1),1:2); 
point2 = pts(marker_ind(2),1:2); 
area1  = pts(marker_ind(1),3); 
area2  = pts(marker_ind(2),3); 
dist = sum((point1-point2).^2).^0.5; 
area = (area1 + area2) / 2; 
maxarea = area * 1.4 
minarea = area * 0.6 
 
% label with the correct min and max areas 
disp('labeling objects again...') 
pts = label_objects(T,minarea,maxarea); 
numplot(pts); 
 
% Use only the y and x coordinates 
points = pts(:,[2 1]); 
% Calculate the grid 
grid = points2grid(points, dist, GRID_SIZE, size(img)) 
 
%do the optimization 
dimension = size(I); 
height = dimension(1); 
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width = dimension(2); 
%k = -.0000015; 
k = 0; 
guess = [(height+1)/2 (width+1)/2 k]; 
 
% optimize 
optimized = lsqnonlin('vector_optimize', guess, [ ], [ ], [ 
], dist, points, grid); 
 
cy = optimized(1); 
cx = optimized(2); 
k = optimized(3); 
 
% write distortion values 
fid = fopen(strcat(DIR,'\\',name,'_coeff.txt'),'w'); 
 
fprintf(fid,'%f %f %0.12f', [cx, cy, k]); 
 
fclose(fid); 
 
% undistort image 
outimg = undistort_image(img, cx, cy, k); 
 
%figure; imshow(img); 
%figure; imshow(outimg); 
 
disp('Writing output images...') 
imwrite(outimg, strcat(DIR,'\\',OUTIMAGE)); 
%imwrite(outimg, strcat(DIR,'\\',BMPIMAGE)); 

 
THRESHHOLD_IMG.M 
 

function [Tl,Th] = threshold_img(img, nblocks) 
%THRESHOLD_IMG  Automatically threshold image in to objects 
and background based on local edge intensity. 
%[Tl,Th] = threshold_img(img, nblocks) 
%  returns high and low thresholds for image segmentation 
%G = threshold_img(img, nblocks) 
%  returns thresholded image 
 
if nargin < 2, nblocks = 10; elseif isempty(nblocks), 
nblocks = 10, end; 
 
%find threshold by looking at average edge intensity 
I = imresize(img,.25); 
disp('edge detection') 
[bw,thresh] = edge(I,'zerocross'); 
E = I; 
E(~bw)=0; 
bsiz = bestblk(size(I), max(size(I))/nblocks); 
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tm = blkproc(E,bsiz,'mean([x(find(x));0])'); 
tm(find(tm==0))=max(tm(:)); 
 
if(any(size(tm)>5)), 
   tm = conv2(tm,fspecial('gaus',1.5),'same'); 
end 
 
disp('resize and renorm') 
tm = imresize(tm,size(img),'bilinear'); 
%tsdv = 
blkproc(E,bsiz,'repmat(std([x(find(x));0]),size(x))'); 
%tm = mean(img(bw)); 
tsdv = std(img(bw)); 
Tl = tm - tsdv./2; 
Th = tm + tsdv./2; 
%Tl = kron(Tl,ones(2,2)); 
%Th = kron(Th,ones(2,2)); 
 
if nargout == 1 
   %normalize 
   G = (img-Tl)./(Th-Tl); 
    
   %set all pixels greater than Th to 1 
   G(find(G > 1)) = 1; 
   %set all pixels less than Tl to 0 
   G(find(G < 0)) = 0; 
    
   [m,n] = size(G); 
   G(1,:) = 1; 
   G(m,:) = 1; 
   G(:,1) = 1; 
   G(:,n) = 1; 
    
   Tl = G; 
   Th = []; 
end 

 
LABEL_OBJECTS.M 
 

function pts = label_objects(img, Amin, Amax) 
% coords = label_objects(img, Th, Tl, Amin, Amax) 
%      img is the image of the test pattern, 
% Amin and Amax are the min and max area of an object. 
%     returns the coords of the centriods of the objects. 
 
if (nargin < 3), Amax = inf, end  
if (nargin < 2), Amin = 0, end  
 
disp('bwmorph clean') 
B = img > 0; 
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B = bwmorph(B,'clean'); 
imagesc(B) 
drawnow; 
 
disp('bwlabel') 
L = bwlabel(B,8); 
imagesc(L) %, colorbar 
drawnow 
 
disp('index reorder') 
K = find(L(:)); 
%create matrix indexed by label 
Lind = sparse(K,L(K),img(K)); 
 
Avec = sum(Lind,1); 
good = find(Avec > Amin & Avec < Amax); 
 
%preallocate some of the result structure in advance 
%the colums are xcoord, ycoord, and Area, and moments. 
pts = zeros(length(good),9); 
 
disp('moment calculations') 
num=0; 
for i = good 
   num = num+1; 
    
   ind = find(Lind(:,i)); 
   [I,J] = ind2sub(size(img),ind); 
    
   %calculate area and centroid 
   A = Avec(i); 
   x = sum(img(ind).*J/A); 
   y = sum(img(ind).*I/A); 
          
   %find the higher order invariant moments 
   %ivm = 
affine_invariant_moments(img(min(I):max(I),min(J):max(J)))' 
   %ivm2 = affine_invariant_moments(img(ind)>0,J,I)'; 
    
   %pts(num,1:9) = [x,y,A, ivm2(:)']; 
   pts(num,1:3) = [x,y,A]; 
end 
 
pts = pts(1:num,:); 
num 

 
SQDIST.M 
 

function D = sqdist(X1,X2) 
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% computes the distance b/w every pair of column vectors in 
X1, and X2; 
 
if nargin == 1 
   X2 = X1; 
end 
 
N = size(X1,2); 
M = size(X2,2); 
 
X11 = repmat(sum(X1.^2)',1,M); 
X22 = repmat(sum(X2.^2) ,N,1); 
X12 = X1'*X2; 
 
D = X11 - 2*X12 + X22; 

 
POINTS2GRID.M 
 

function grid = points2grid(pts, distance, gridsize, 
imgsize) 
 
% pts is [y x] 
 
center = [imgsize(1)/2 imgsize(2)/2]; 
center_grid = [round(gridsize/2) round(gridsize/2)]; 
 
D = sqdist(pts',center'); 
[val, center_marker] = min(D); 
 
% Initialize grid to all zeroes of gridsize by gridsize 
grid = zeros(gridsize,gridsize); 
% Set the center position to center_marker 
grid(center_grid(1), center_grid(2)) = center_marker; 
 
% Recurse right 
grid = findnext(pts, grid, distance, center_grid, [0 1], 
pts(center_marker,:), [0 distance]); 
% Recurse right 
grid = findnext(pts, grid, distance, center_grid, [0 -1], 
pts(center_marker,:), [0 -distance]); 
 
% For each grid position found in the center horizontal line 
for x = 1:gridsize 
   marker = grid(center_grid(1), x); 
   if (marker~=0) 
      % Recurse up 
  grid = findnext(pts, grid, distance, 
[center_grid(1) x], [1 0], pts(marker,:), [distance 0]); 
      % Recurse down 
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      grid = findnext(pts, grid, distance, [center_grid(1) 
x], [-1 0], pts(marker,:), [-distance 0]); 
   end 
end 

 
FINDNEXT.M 
 

function newgrid = findnext(pts, grid, distance, gridpos, 
grid_direction, imgpos, img_direction) 
 
newgrid = grid; 
gridsize = size(grid); 
 
new_gridpos = gridpos + grid_direction; 
new_imgpos = imgpos + img_direction; 
 
% Only do it if the new grid position is inside the grid 
if (new_gridpos(1)>=1 & new_gridpos(1)<=gridsize(1) & 
new_gridpos(2)>=1 & new_gridpos(2)<=gridsize(2)) 
 % find the closest point to the estimated point 
   D = sqdist(pts',new_imgpos'); 
   [val, marker] = min(D); 
    
   % if the marker of the new point is not equal to the 
previous one. 
   if (marker ~= grid(gridpos(1), gridpos(2))) 
    point_marker = pts(marker,:); 
    d = sum((point_marker-new_imgpos).^2).^0.5; 
    % if the new point is close enough to the estimated 
one 
      if (d < distance*0.6) 
         % Set the new grid point 
         newgrid(new_gridpos(1), new_gridpos(2)) = marker; 
         % keep on recursing in the same direction 
         % but this time use point_marker-imgpos as the 
image direction 
         % Because of the distortion in the image 
point_marker-imgpos is going to be more slanted than 
img_direction 
         %  which is what we want. it will be a 
better estimate for the next point 
         newgrid = findnext(pts, newgrid , distance, 
new_gridpos, grid_direction, point_marker, point_marker-
imgpos); 
      end 
   end 
end 

 
VECTOR_OPTIMIZE.M 
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function error = vector_optimize(in, distance, pts, grid) 
 
cy = in(1); 
cx = in(2); 
center = [cy cx]; 
k = in(3); 
 
gsize = size(grid); 
 
% undistort the points 
points = mat_undistort_points(pts, center, k); 
 
error = []; 
 
% for each horizontal line in the grid 
for y = 1 : gsize(1) 
   line = grid(y,:); 
   % get all non zero elements 
   line = line(line>0); 
   line = points(line,:); 
   s = size(line); 
    
   % if at least 5 elements 
   if (s(1)>=5) 
      % throw away the 2 end points (they might be outliers) 
%      line = line(2:s(1)-1,:); 
       
      % fit line and grab the error (residue) 
    [coeff res] = linefit(line); 
      error = [error; res]; 
   end 
end 
 
% for each vertical line in the grid 
for x = 1 : gsize(2) 
   line = grid(:,x); 
   % get all non zero elements 
   line = line(line>0); 
   line = points(line,:); 
   s = size(line); 
    
   % if at least 5 elements 
   if (s(1)>=5) 
      % throw away the 2 end points (they might be outliers) 
%      line = line(2:s(1)-1,:); 
       
      % fit line and grab the error (residue) 
      [coeff res] = linefit(line); 
      error = [error; res]; 
   end 
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end 
 
%disp(sprintf('func: center = (%0.3f, %0.3f), k = %0.9f, 
error = %d', cy, cx, k, sum(error))) 

 
LINEFIT.M 
 

function [l,residue] = linefit(P) 
% P is a matrix of size n by 2, which is of the form  
% [x1 y1; x2 y2; ... xn yn] which are the points you want 
% to fit 
 
% l is a vector [a b c] which is the best fit line 
% of the form ax+by-c=0 
 
% residue is proportional to the error (variance?) 
 
[m n] = size(P); 
if n ~= 2, error('matrix P must be m x 2'),end 
if m < 2, error ('Need at least two Points'), end 
one = ones(m,1); 
% p = centroid of all the points in P 
p = (P'*one)/m; 
% matrix of centered coordinates 
Q = P-one*p'; 
[U Sigma V] = svd(Q); 
n = V(:,2); 
l = [n;p'*n]; 
residue = Sigma(2,2); 

 
UNDISTORT_IMAGE.M 
 

function outimg = undistort_image(img, cx, cy, k) 
 
dimension = size(img); 
height = dimension(1); 
width = dimension(2); 
colordepth = dimension(3); 
 
center = [cy cx]; 
 
all = img | 1; 
all = all(:,:,1); 
points = line2points(all); 
 
outimg = im2uint8(ones(height, width, colordepth)); 
 
points_before = mat_distort_points(points, center, k); 
 
% remove all the indices that are out of bounds 
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points = points(1<=points_before(:,1) & 
points_before(:,1)<=height & 1<=points_before(:,2) & 
points_before(:,2)<=width,:); 
points_before = points_before(1<=points_before(:,1) & 
points_before(:,1)<=height & 1<=points_before(:,2) & 
points_before(:,2)<=width,:); 
 
y_before = points_before(:,1); 
x_before = points_before(:,2); 
 
y = points(:,1); 
x = points(:,2); 
 
y_before_floor = floor(y_before); 
x_before_floor = floor(x_before); 
y_before_ceil  =  ceil(y_before); 
x_before_ceil  =  ceil(x_before); 
 
ind = sub2ind(dimension, y, x); 
 
ind_ff = sub2ind(dimension, y_before_floor, x_before_floor); 
ind_fc = sub2ind(dimension, y_before_floor, x_before_ceil); 
ind_cf = sub2ind(dimension, y_before_ceil,  x_before_floor); 
ind_cc = sub2ind(dimension, y_before_ceil,  x_before_ceil); 
 
ind_4 = [ind_ff, ind_fc, ind_cf, ind_cc]; 
 
x_f = x_before - x_before_floor; 
x_c = 1   - x_f; 
y_f = y_before - y_before_floor; 
y_c = 1   - y_f; 
 
factor_4 = [y_c, y_c, y_f, y_f] .* [x_c, x_f, x_c, x_f]; 
 
for i = 1:colordepth 
   img_temp = img(:,:,i); 
    
 img_4 = double(img_temp(ind_4)); 
 
 % linearly interpolate 
 outimg_temp = im2uint8(ones(height, width)); 
   outimg_temp(ind) = uint8(round(sum(img_4.*factor_4, 2))); 
    
   outimg(:,:,i) = outimg_temp; 
end 

 
MAT_UNDISTORT_POINTS.M 
 

% Radial undistortion for a matrix of points 
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function points_out = mat_undistort_points(points_in 
,center, k) 
 
dirs = points_in - repmat(center,size(points_in,1),1); 
 
sqr_dirs = dirs.^2; 
 
rp = sqrt(sqr_dirs(:,1) + sqr_dirs(:,2)); 
 
r = mat_undistort(rp, k); 
 
f = (r ./ rp); 
 
f = repmat(f,1,2); 
 
dirs = dirs .* f; 
 
points_out = repmat(center,size(dirs,1),1) + dirs; 

 
MAT_DISTORT_POINTS.M 
 

% Radial distortion for a matrix of points 
function points_out = mat_distort_points(points_in ,center, 
k) 
 
points_out = points_in; 
 
dirs = points_in - repmat(center,size(points_in,1),1); 
 
sqr_dirs = dirs.^2; 
 
rp_t = sqrt(sqr_dirs(:,1) + sqr_dirs(:,2)); 
 
rp = rp_t(rp_t>0); 
dirs = dirs(rp_t>0,:); 
 
r = mat_distort(rp, k); 
 
f = (r ./ rp); 
 
f = repmat(f,1,2); 
 
dirs = dirs .* f; 
 
points_out(rp_t>0,:) = repmat(center,size(dirs,1),1) + dirs; 

 
MAT_UNDISTORT.M 
 

% Radial undistortion for a matrix 
function r = mat_undistort(rp, k) 
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if k == 0 
   r = rp; 
elseif k > 0 
   nrp = rp * 3.0; 
   t = 1.0 / (6.0 * k); 
   d = sqrt(nrp .* nrp + 8.0 * t); 
   r = ((nrp + d) * t).^(1/3) - ((d - nrp) * t).^(1/3); 
else 
   t = sqrt(-1.0 / (3.0 * k)); 
   d = -1.5 * rp / t; 
   for i = 1:size(d,1), 
      if abs(d(i)) > 1.0 
%      disp('ERROR: undistort error'); 
       if d(i) >= 0.0 
          d(i) = 1.0; 
       else 
          d(i) = -1.0; 
       end 
    end 
   end 
   r = -2.0 * t * cos((acos(d) + pi) / 3.0); 
end 

 
MAT_DISTORT.M 
 

% Radial distortion 
function rp = mat_distort(r, k) 
 
rp = r + k * r.^3; 

 
LINE2POINTS.M 
 

function points = line2points(line) 
 
[a b] = find(line); 
points = [a,b]; 



  

 


