RADIAL UNDISTORTION AND
CALIBRATION ON AN IMAGE
ARRAY

by

Charles B. Lee

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering
and Master of Engineering in Electrical and Computer Science
at Massachusetts Institute of Technology
May 22, 2000

Copyright 2000 M.1.T. All rights reserved.

Author

Department of Electrical Engineering and Computer Science
May 22, 2000

Certified by

Leonard McMillan
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Thesis

RADIAL UNDISTORTION AND
CALIBRATION ON AN IMAGE
ARRAY
by
Charles B. Lee

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering and
Master of Engineering in Electrical and Computer Science

ABSTRACT

The Lumigraph is novel way of parameterizing all the light coming out of a scene.
Traditional way of capturing Lumigraphs requires a camera mounted on a
precision robotic gantry. This is an expensive solution that cannot be used to
easily capture outdoor scenes. Recently, the idea of a Lumigraph Scanner was
introduced. This is a inexpensive solution that consists of a portable scanner that
would make capturing outdoor scenes possible. Scans from this scanner need to
be processed before it can be used as input to a Lumigraph renderer. This paper
presents a simple and straightforward process that would calculate the radial
distortion coefficients and the intrinsic values of each lens of the Lumigraph
Scanner. This makes it easy to capture Lumigraphs using a Lumigraph Scanner. It
would therefore make it a viable alternative to the traditional method of capturing
Lumigraphs.

Thesis Supervisor: Leonard McMillan
Title: Assistant Professor, MIT Electrical Engineering and Computer Science
Department

TABLE OF CONTENTS

Table OF CONLENTS ... s 3
LISt OF FIQUIES ..ot 4
ACKNOWIBAGMENTS. ..o 5
L INErOAUCTION. ... 6
L1 MOTIVALION......ooiiiiie e 6

1.2 BaCKQrOUNG........ccviiicieiicece s s 7
1.2.1 The LUMIGraph ... 7

1.2.2 The Lumigraph Scanner Project...........ccocovvivieeiiiiesinieeeinseennns 7

1.3 G081 ..o 8

1.4 TNESIS OULIING ... 8

2. The Lumigraph SCANNENccviiiieiiceees e 10
2.1 SCANNET MAKEUP ..ot 10

2.2 Scans From the Lumigraph SCanner............ccocvvvieeiiceeinceesseeenne 12

3. IMAJE EXLFACHION......c.civicieiicce s 16
3.1 Image EXtraction for SCaNS...........cccoeviiieiiiieeiicee e 16

3.2 Calculating Location Of IMages..........ccoverirnnenenieseseeseeesseienn, 16

3.3 EXIracting IMAJEScvvvcveiiiceice e 18

4, Radial UNGISTOMTION........c.cviiiricirierieeice s 19
4.1 Radial Distortion EQUAtIONcccccviiiiiiiie e 19

4.2 Finding Radial Distortion Coefficients for Scanned Images..................... 20
4.2.1 Colored Triangle Pattern...........cccoeevicisieieseeseeess s 20

4.2.2 Square Grid Pattern ... s 21

4.2.3 Finding Coefficients By Optimization............ccccoevvvvveinieesiiiennnnns 23

4.3 Radially Undistorting an Imagecccccevveviniieiiieieesss e, 24

5. CalIDrALION. ...t s 26
5.1 Scans Needed For Calibration............ccovveninnennseeseseeeens 27

5.2 COINEr DELECTION ... 29

5.3 Calculating Camera Intrinsic ValUes...........ccccoevvivieeinicieeiceeccceens 29

B. FULUIE WOTK ... s 30
6.1 No User Interaction for Radial Undistortioncccccoevevnneininine, 30

6.2 Calculating Camera EXtrinSiC ValUeS..........c.ccoeeviieeiiieeeiniseessseenne 30

6.3 Using Images As Input To Lumigraph Renderer...........cccocovvevenirnnnne. 31

7. CONCIUSION ..o 32
7.1 SUMMEATY oot 32

7.2 ACRIBVEMENTS ... 33
BIDlIOGrapNY ..o 34
APPENTIX Ao 35
A.1 Image EXtraction SOUrCe COUE.........cccoiuriririrnieniese s 35
A.2 Radial Undistortion SOUrce Code............coeirininienininseessseeeene, 43

LIST OF FIGURES

Number Page
Figure 1: LUmigraph SCANNET.........cccooviieiiiiecseieees et 11
Figure 2: Camera Mounted on a Precision Robotic Gantry.............ccccccoveviinnen, 12
Figure 3: SAMPIE SCAN ..o 13
Figure 4: Color Correction And Aspect Ratio COrrectioncccoeevereverinnene, 14
Figure 5: All White Background And Calculated LOCAtioNS............cccocviviniennee 18
Figure 6: SEleCting tWO SQUAIES..........covevrirerieirieireeisee st sseeenes 22
Figure 7: 9 Horizontal and 9 Vertical LINESccccocvvviiivniiiiiiieeeseeeennna, 23
Figure 8: Comparison of Distorted and Undistorted Image..........ccccovvvireiriennne. 25
Figure 9: Scan of Pattern Captured By Column 4...........ccccovvvveiiiceeiiicseinnn, 27
Figure 10: Pattern Captured By LENS B-4........cccoovveiiiieciecesseee e, 28
Figure 11: Corners Marked on the Pattern ..o, 29

ACKNOWLEDGMENTS

I would like to thank Professor Leonard McMillan for his guidance and support.
I also wish to thank Jason Yang for being a great partner. Many thanks goes to
Mike Bosse for letting me use some of his source code and for giving me Matlab
pointers when I needed them. Same goes to Chris Buehler and Aaron Isaksen for
all the help they have given me.

I would also like to thank the Eyeshake Team, for understanding that | cannot
spend 24 hours a day on the startup because | had to work on this Thesis.

And of course, |1 would like to thank my parents for shaping me to be the way |
am now. | really appreciate it. And last but not least, thanks Aileen for always
supporting me through the good times and the bad times.

Chapter 1

1. INTRODUCTION

1.1 Motivation

Image-based rendering is a novel approach to computer graphics. Instead of
creating images by rendering from models, the image-based rendering approach
creates new images without needing to model the scene. This is done be using
interpolation and morphing to create the pixels of the output image using the

pixels from input images.

The Lumigraph [Levoy96, Gortler96] is a very useful image-based rendering
technique, but there are many disadvantages. The system needed to capture a
Lumigraph is very expensive. Currently, only the computer graphics labs at
Stanford and MIT have a Lumigraph capturing device. Most places either do not
have the money and/or the space to put it.

Another disadvantage is that the Lumigraph capturing device is too immobile to
be able to capture outdoor scenes. So all the acquired Lumigraphs that are

currently available are of indoor scenes.

We wish to make a small and inexpensive Lumigraph capturing device. This
would not only allow us to capture beautiful outdoor scenes, it would also make it

affordable for everyone to conduct more Lumigraph related research.

1.2 Background

1.2.1 The Lumigraph

The concept of the Lumigraph was introduced by both Levoy and Hanrahan
[Levoy96] and Gortler et al. [Gortler96]. Levoy and Hanrahan call their version a
lightfield but the two techniques are very similar. The papers introduced the idea
of 4D parameterizing of all the light coming out or going in to a scene. This
approach samples the light going through two planes: the UV-plane and the ST-
plane. Once this information is captured, a novel scene can be rendered by
interpolating the desired rays from the acquired images. The nice thing about this
approach is that there is a very intuitive way to capture and store this 4D
function. One just has to place cameras on the UV-plane and capture pictures of
the ST-plane. Each pixel in each of the captured image would be a sample of a
ray passing through the UV and ST plane.

Using images of a scene as input, one can create images of the same scene from a
different viewpoint. This is done by interpolating the pixels of the input images to
produce the pixels of the output image. The advantage of this approach is that it
could produce highly realistic images in real-time. This is because rendering time
is only proportional to the image size, and not the scene complexity.

1.2.2 The Lumigraph Scanner Project

This paper ties closely to the Lumigraph Scanner project by Jason Yang. [Yang00]
Yang has constructed a lightfield acquisition device based on a flat-bed scanner.
We have focused on correcting the distortions visible in the images captured by
this device.

Yang’s objective was to build an inexpensive and portable Lumigraph Scanner.
The images that this scanner produces will need to be manipulated by software
before it could be inputted into a Lumigraph renderer. This paper describes a
simple way to radially undistort and calibrate the image array retrieved from the
scans of the Lumigraph Scanner.

1.3 Goal

We need to extract the individual images from the scans, radially undistort these
images, and calibrate the lenses of the Lumigraph Scanner.

The goal is to do this with as little user interaction as possible. We also want to
come up with a process that is simple and quick. This way, users can take a scan,
apply this simple and quick process, and immediately see the results in a
Lumigraph renderer.

1.4 Thesis Outline

Chapter 2 provides an overview of the Lumigraph Scanner. It also talks about the
color correction that needs to be done on the scans.

Chapter 3 describes the process of image extraction. Image extraction is basically
the process of extracting the image array from the scans.

Chapter 4 describes a simple radial undistortion method that can be used to find
the radial distortion coefficients.

Chapter 5 shows how we can apply an existing calibration routine to calibrate our

images.

Chapter 6 describes any future work that needs to be done.

And Chapter 7 concludes this paper with a summary of the whole process.

Chapter 2

2. THE LUMIGRAPH SCANNER

The Lumigraph Scanner project introduces a new way to capture a Lumigraph.
Instead of using a camera mounted on a precision robotic gantry, we can now use

a simple scanner to capture Lumigraphs very easily.

2.1 Scanner Makeup

The Lumigraph Scanner is made up of a standard off-the-shelf flatbed scanner
and an array of plastic lenses. The lenses used are just the top covers of “bug
boxes”, which are the plastic boxes used for displaying insects. The lenses are
glued together in an 8 by 11 array configuration and are affixed on top of the
scanner. The scanner can then be used to capture Lumigraphs by turning it on
the side and scanning an image of the scene. With the process presented in this
paper, each scan create by this Lumigraph Scanner can be used as input to a
Lumigraph renderer.

There are many advantages of the Lumigraph Scanner over the traditional
Lumigraph capture method, which uses a camera mounted on a precision robotic
gantry. (See figure 2.) Since the Lumigraph Scanner uses an off-the-shelf scanner,
it is definitely a much cheaper solution. In addition, the scanner (See figure 1.) isa
much smaller device that can easily be used to capture outdoor scenes, which is

hard for a mounted camera setup to capture.

The disadvantage of the Lumigraph Scanner is that since each image is not taken
by the same camera we would need to independently calibrate each of the lenses

10

(virtual cameras) separately. Also, since we have used short-focal length single-
lens optics, each image exhibits considerable radial distortion. The process of
undistorting these images and calibrating the lenses could potentially be very
tedious and take a long time. This paper presents a simple method to radially
undistort and calibrate the individual images of the array.

Figure 1: Lumigraph Scanner

11

Figure 2: Camera Mounted on a Precision
Robotic Gantry

2.2 Scans From the Lumigraph Scanner

The scanned image will contain an 8 by 11 array of images of the scene. The scan
would be composed of 88 circular images. Each image would correspond to the
image of the scene taken by a virtual camera at that location. It would be as if 88
different cameras were used to take an image of the scene at the same time.

From figure 3, it is obvious that the scanned images cannot easily be used as-is
for input to a Lumigraph renderer. There are problems with the color, the aspect
ratio, and radial distortion. The image must also be split up into 88 separate
images, each representing an image taken by the virtual camera associated with
the lens on the scanner. As mentioned before, these images need to be separately
calibrated because, unlike a single translated camera, we do not expect that the
camera intrinsics would be the same for all the images. The first two photometric

12

problems can be easily fixed by using a standard image processing methods. For
instance, Paint Shop Pro can be used to color correct the image and adjust its
histogram. (See figure 4.)

Figure 3: Sample Scan

13

wmmmmw
WMWszwf‘t

Figure 4: Color Correction And Aspect
Ratio Correction

However, before we can use this as input to a Lumigraph render, we must solve
other geometric calibration problems. Essentially, any accurate model of a camera
should provide a mapping from each point on the image place to a ray in space.
The determination of this mapping is called geometric calibration.

The central contribution of this thesis is a system for the geometric calibration of a
multi-lens camera array. The following steps are required to solve this problem.
First, the composite image must be segmented into individual image planes.
Then, the image is corrected for non-linear geometric distortions common to

14

spherical lens systems. Finally, an idealized pin-hole camera model is determined
for each sub-image of the array.

Chapter 3 describes how images are extracted from scans. Chapter 4 describes
how each image is radially undistorted. Chapter 5 describes how each image is
calibrated.

15

Chapter 3

3. IMAGE EXTRACTION

Images must be extracted from the image array in a consistent manner. This way
the process can be repeated for different scenes in such a way that the extracted
images correspond to different images taken by the same camera.

3.1 Image Extraction for Scans

If we knew the exact location of each image in the image array, then it would be
easy to extract the images. For the scans taken by the Lumigraph Scanner, the
locations of the images are approximately located on an 8 by 11 grid. The images
might be a little off from the grid because the bug box lenses are mounted on the
scanner using glue. This could lead to small holes between the lenses that would
make the location of the images deviate from a perfect grid.

3.2 Calculating Location of Images

The problem now is to find the image location of each virtual camera in the scan.
It is possible to manually figure out the locations for each of the 88 lenses, but
this would be a very tedious task and it could take a long time. Therefore, we
would like to come up with a solution that requires little or no user interaction.
Fortunately, we would only need to do this calculation once for a given
Lumigraph Scanner. This is because the image locations would be the same for
each scan.

16

The solution that we came up with takes advantage of the fact that the locations
of the images are very close to a grid, and the fact that the images consist of a
circle that represents the border of the lens. The idea is very simple. Have the
user specify the location of the grid that approximates the actual location. Then
use a circle finding algorithm to find the exact location of each circle. The center
and the radius of each circle would then be stored and used later on to extract the
image that correspond to this virtual camera.

It is best to use a scan of an all-white background. This way, the circle-finding
algorithm would less likely err by finding a circle that is not the boundary circle.

The implementation of this location calculation algorithm is written as a Matlab
program. The circle calculation algorithm is just an implementation of the Hough
Transform circle-finding algorithm. It searches for the circle in a 10-pixel range
for the x, y, and radius value.

We also provide a way for the user to manually specify the circle if the circle-
finding algorithm is unable to correctly locate the boundary of a lens.

See Figure 5 for a scan of an all-white background and the location of the found
boundary circles.

17

{
S S T T, TIE T s b R T
{ [| | |
) wd | 4 - " i
h r 5 .

Figure 5: All White Background And
Calculated Locations

3.3 Extracting Images

Once the image locations are calculated, images can be easily extracted. Since we
would know the center and the radius of the circle that corresponds to the
boundary of the corresponding lens, all the pixels within this circle would belong
in the extracted image.

The implementation of this part is also written as a Matlab program. This
program takes as input the scan image and the location file, and for each center
and radius value in the location file, it would extract the circular image and create

a new image file. See Appendix A for the Matlab code.

18

Chapter 4

4. RADIAL UNDISTORTION

One the most common visual distortion of images seen through a lens is radial
distortion. This occurs because the magnification of the lenses is different at the
edge of the lenses versus the center of the lenses. There are two kinds of radial
distortion: pincushion and barrel. Like their names suggest, pin-cushion radial
distortion distorts a square object into pin-cushion shaped object, while barrel
radial distortion distorts a square object into more of a barrel shaped object.

4.1 Radial Distortion Equation

Radial distortion just means that each point is radially distorted from a certain
point, that we call the center of radial distortion.

Radial distortion is governed by the equation: [Weng92]
r’ =1 + kar® + Kor® + Kkar’ + ...

But according to Tsai [Tsai87], for practical purposes, we can safely approximate
the radial distortion equation by using only the first term of the infinite series. So
for this thesis, we use this simplified radial distortion equation:

r' =r + kr?

r’ is the distorted radius and r is the original radius. K is the coefficient of radial
distortion. This shows that the coefficient k affects how much a point is radially

19

distorted. The sign of k affects the type of radial distortion. If k is negative, itis a
barrel radial distortion. If k is positive, it is a pincushion radial distortion.

In order to undistort an image, we need to find three variables: the x and y values
of the center of radial distortion and the coefficient of radial distortion, k.

4.2 Finding Radial Distortion Coefficients for Scanned Images

Since each lens on the Lumigraph Scanner is different, the radial distortion
parameter for each sub-image would vary. We need to calculate the radial
distortion coefficients for each of the 8 by 11 images. It is important that our
radial undistortion algorithm requires little or no user involvement. We came up
with a simple algorithm to undistort images that requires very little user

interaction.

The idea is that straight lines in real life should remain as straight lines in an
image. This is because the image just shows a projection of the scene onto the
image plane, and a projection matrix will always preserve straight lines. Radial
distortion will tend to curve straight lines. So if we can detect lines that should be
straight in the images, then we can use an optimization routine to try to find the
distortion coefficients that will make these lines straight.

4.2.1 Colored Triangle Pattern

We need to come up with a pattern that makes detecting lines easy. Originally we
came up with a pattern that had 5 differently colored straight lines that forms a
star. We would then take a picture of this pattern and use a color separating
method to extract the pixels that belong to each line. We can then try to
straighten out these lines. As it turned out, the colors in the scanned image vary
too much from the expected color. So the color separating method yielded too

20

many error pixels. We had to give up this approach and find a better pattern to

use.

4.2.2 Square Grid Pattern

Our second approach was a little different. Instead of trying to detect lines, we
would detect objects. The pattern we used is a 9 by 9 grid of squares. We chose to
use this pattern mainly because it is the same pattern used by the calibration
process described in Chapter 5. This way, we would save some work by being
able to use the same scans to do both radial undistortion and calibration.

In order to locate the grid in the image, we need to find the squares. This is done
using a standard connected components labeling algorithm, specifically the bwlabel
function in Matlab. But before we can apply bwlabel to the image, we must first
make sure that the image has the square objects separated from the background.
This is done using a threshold algorithm created by Michael Bosse that separates
objects from background based on local edge intensities. See Appendix A for the
Matlab source code.

Once the square objects are located, we need to pinpoint the 9 by 9 grid. To do
this, we require the user to specify two of the squares next to each other. The
user just needs to click on the two squares. (See Figure 7.) This helps the program
figure out the size of the square and the location and orientation of the grid.

The program would then recursively move outwards from one of the two
selected squares in all four directions to find the whole grid of squares. The
Matlab source code can be found in Appendix A.

21

Eie Edl Jook ‘wndow Hep
DER@ h A A s

=1 00 180 2 5 g LI 0 A0 480 800

Figure 6: Selecting two squares

Once the grid of squares is located, we can calculate the location of the centroid
of each square. Since we know that the squares lie on a grid, the centroids of the
squares must also lie on a grid. This would means these centroids are actually
points that lie on a group of straight lines. Specifically, there are 18 lines, 9 vertical
and 9 horizontal, which we know should be straight. Each line is made up of 9
points. See Figure 6.

22

R Y A o I o O
I B A O
A F ret ri1 r re rdl il
I I Y 0 A O
R Y A o I o O
I B A O
A F ret ri1 r re rdl il
I I Y 0 A O
R A A o I o I
I B 5 A B
FuEFEEFEEPEErFEErEEPEErEET.|
N B 0 A O
R Y 0 A o I o I
I B 5 A B
FuEFEEFEEPEErFEErEEPEErEET.|
N B 0 A O
R Y 0 A o I o I
I B 5 A B

Figure 7: 9 Horizontal and 9 Vertical
Lines

4.2.3 Finding Coefficients By Optimization

Once the points of the lines are found, we can just use a least square non-linear
optimization algorithm to fit these 18 horizontal and vertical lines into straight
lines. The initial guess at k, the radial distortion coefficient, is 0. And the initial
guess at the center of radial distortion is just the center of the image. The least
square non-linear optimization algorithm we used is the Isgnonlin function in
MATLAB. And we also used a standard line-fitting algorithm to fit the points to
a straight line. The deviation of the points from the best-fit line is used as the
error values to the Isgnonlin function. This optimization routine finishes in about
50 iterations and finds the radial distortion coefficient and the center of radial
distortion.

23

As mentioned before, the process of finding these coefficients needs to be
repeated for each of the 88 images. This whole process is done once per
Lumigraph Scanner, because images in each successive scan should be radially
distorted the same way.

4.3 Radially Undistorting an Image

To radially undistort an image, we just bi-linearly interpolate the mapped points in
the distorted image and copy them to the undistorted image.

Specifically, we know that each point in the undistorted image corresponds to a
point in the distorted image. So we just apply the radial distortion function to
each point of the desired image to get the point in the distorted image it
corresponds to. Specifically, these equations are used to calculate the distorted
coordinates:

X'=cx+(X- cX)(1+kr?)

y'=cy+(y- cy)d+kr?)

where 1 =+/(x- cX)? +(y- cy)®

The calculated points will be non-integer. Therefore, we would bi-linearly
interpolate the four closest points in the distorted image and copy this pixel to the
desired undistorted image. This process is applied to the whole image. Using
Matlab, it is all done very simply using matrix manipulations. See Appendix A. for
the code. Figure 8 shows an example of a distorted image and the undistorted
version of it.

24

Figure 8: Comparison of Distorted and
Undistorted Image

25

Chapter 5

5. CALIBRATION

Calibration is an important step in any computer graphics application that uses
lenses/cameras. Lenses project a real world scene onto a flat image. This
projection is different for each lens and it depends on many intrinsic values for
the lens. Calibration is the process of finding these intrinsic values. Once we have
found these values, we could figure out how the pixels in the image correspond
to points in the real world.

There have been many different proposed methods of calibration. Many of these
methods require you to know the precise location of a few points in the real
world. This is a very cumbersome task, and it also requires the use of a precise
location-finder device, like a Faro arm, or a precision calibration object. This
makes performing calibration inconvenient for someone without access to such a
device.

Zhang recently published a paper [Zhang99] describing a calibration method that
is very easy to do and only requires software processing. This method needs at
least two images of a planar pattern. This pattern consists of a 9 by 9 grid of
squares, which we also used for the Radial Undistortion method described in
Chapter 4.

Zhang calculates the intrinsic values by using a close-form solution with a non-

linear refinement using maximum likelihood estimation.

26

We believe that Zhang's calibration routine is very well suited for our needs. This
would allow us to just take scans of the pattern and use software to calibrate all
the lenses.

€

1l

ceeEee
T —_— iy ;' 1.-? .
Ceveseee

Al A
-

|

4

@ a6 @ 6) € dh @ 6 gh 6

|
. |

e6aa

r S .. -

{
|

-

k|

db. 4% Ak db Ak Jdb Jd

666666
A6 6

-
k|

{
{
{
{
{
:
{
{
{
:
i

Voo rveeoe e

eene
1: I |
o, | e ™
“ e e

| |

b dbk Jdb

.l

Figure 9: Scan of Pattern Captured By
Column 4

5.1 Scans Needed For Calibration

We decided to use 4 different images of the pattern for each lens: straight on,
tilted left, tilted right, and tilted upwards. So for each of the lens on the
Lumigraph Scanner, we would need 4 images taken by that lens of the pattern at
these 4 different angles. Of course, we would like to get all these images with as
few scans as possible. We were able to get all the lens of a certain column to see
the whole pattern, (See Figure 9.) so this means we would only need to take 4

27

scans per column, or in other words, 32 scans. This is still quite a lot of scans, but
it is a far less than 352 scans, which is the number of scans needed if we needed
to take 4 scans for each lens.

sEEEENEES
EEEENENEE
ENEEENEEE
EEEEEEEEE
EEEEEEEEE
EEEEEEEEE
SEEEEEEEN
EREEEEEEE
EEEEEEEN
EEENENEEN

EREEENEAn
EEEERREEEE
EEEEREREREN
EEEEEREREN
ERERERERAER
EEENEEEER
EEEEEEEEER
TILI L
.....lll.
ENEEEEEENR
‘EEEEEEEES
S EEEEEEEEN
S EEEEEEEER
_f..IIIIIIIII
EEEEEEEER

-

Figure 10: Pattern Captured By Lens 6-4

See Figure 10 for the 4 scans from the lens on row 6, column 4. These are images
before radial undistortion. We would actually first apply our radial undistort
software (See Chapter 4.) to it before we calibrate them.

28

5.2 Corner Detection

As required by Zhang’s method, we need to find the corner of each square in the
grid. That is a total of 324 points. These corners are detected using a standard
corner-detection software that finds the corner as the intersection of the straight
lines that are the edges of the squares. The corner points are used because we can
find the corner points with a sub-pixel level accuracy. Figure 11 shows an image
that the corner-finding software produces. This image has the corners of all the
squares marked.

e

T te e R o n
e f g1
et 2 & L R
-
gt L 0.0 8
="t L s 5 8 0 0
=ttt e a8 A
T i s bt
"t i3 1888

Figure 11: Corners Marked on the Pattern

5.3 Calculating Camera Intrinsic Values

The corner points are then used as input to the EasyCalib software that Zhang
provides at ftp://ftp.research.microsoft.com/users/easycalib/EasyCalib.zip.

The EasyCalib program calculates the les intrinsic values a, ¢, b, u0, and v0. It

would also calculate the rotation and translation matrix for each of the input
images.

29

Chapter 6

6. FUTURE WORK

Although we have a working solution that requires little user interaction to
radially undistort and calibrate an image array, there is still a lot of future work
that can be done.

6.1 Nlo User Interaction for Radial Undistortion

Currently the radial undistortion process requires a bit of user interaction to pick
out two of the squares so that the system can find the rest of the squares in the
grid. It would obviously be better if the system could figure out the location of
the grid without any user interaction. This is possible, but we would need to
come up with a way for the system to correctly locate the grid of squares in any

given image.

6.2 Calculating Camera Extrinsic Values

At the time of this writing, we have not gotten a chance to calculate extrinsic
values for the lenses. Extrinsic values specify the location of the lens relative to
the other lenses. Extrinsic values are crucial if we need to know where our virtual

cameras are located with respect to each other.

We might be able to use Zhang’s algorithm to solve this problem. Since Zhang’s
algorithm calculates the location of the camera relative to the planar grid of
squares, if two lenses see the same planar grid, we will know the two lenses’

30

rotation and translation matrix relative to the planar grid. We can then calculate
the rotation and translation matrix from one lens to the other. We can do this
repeatedly until we figure out the relative locations of all the lenses. This would
definitely work for the lenses that lie in the same column, because already have
scans in which the images in the same column all contain the planar grid. We
have not yet captured scans that have two rows both containing the planar grid,
but we do foresee any problems.

Another approach would be to use the method published by Tsai [Tsai86] or
something similar.

6.3 Using Images As Input To Lumigraph Renderer

The next step would be to use the undistorted and calibrated images as input to a
Lumigraph Render. This would show whether or not the Lumigraph Scanner is
indeed a viable alternative to the traditional Lumigraph capture method of using a

camera mounted on a precision robotic gantry.

Chris Buehler, of MIT’s Computer Graphics Lab, recently created a Lumigraph
renderer that is very flexible in terms of the location and orientation of the
cameras used to create the input images. Given the calibration data and the
undistorted images, we believe we would have no difficulty in using Buehler’s

Lumigraph render.

31

Chapter 7

/. CONCLUSION

7.1 Summary

This paper introduces a straightforward process, which can be applied to a scan
from a Lumigraph Scanner in order to use it in Lumigraph renderer.

First, the exact location of the lenses is found. This location calculation algorithm,
which uses a circle-finding algorithm, is straightforward and requires the user to
just specify where to look for the circles. This needs to be done only once,
because the location of the lenses does not change for each successive scan.

Next, the radial distortion coefficients of each image are estimated. This requires
very little user interaction, and it can find the coefficients pretty efficiently. This
also only needs to be done once, because the radial distortion coefficients for
each lens should not change for each successive scan.

Next, you need to use Zhang’s calibration method to calibrate each lens. This is a
fairly tedious task, but it also only needs to be done once.

Although not explored in this paper, you need to find the extrinsic values of the
lenses by using Tsai’'s method or something similar.

Finally, for each scan you take, the software will extract each image, and apply the
correct radial undistortion to each image. This requires no user interaction at all,
because both the location of the lenses and the radial distortion coefficients are

32

previously calculated. So the software only needs to apply the image extraction
procedure and then the radial undistortion procedure. The resultant images and
the calibration data (which were previously calculate) can be plugged into a
Lumigraph renderer so that you can view this captured scene from any location

and orientation.

7.2 Achievements

We believe that our solution is a fairly simple and straightforward process. The
initial calibration process would take some time though, because we need to
calibrate all of the 88 lenses. Fortunately, we only need to do it once for each
Lumigraph Scanner. After the calibration is complete, each successive scan would
require no user interaction at all. This is very valuable, because once a Lumigraph
Scanner is calibrated, capturing a Lumigraph using that Lumigraph Scanner will
be very easy.

33

BIBLIOGRAPHY

[Devernay95] Devernay and Faugeras. Automatic Calibration and Removal of
Distortion from Scenes of Structured Environments. SPIE 2567. pp. 62-
72, 1995.

[Gortler96] Steven Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The lumigraph. In Computer Graphics, Annual Conference Series, 1996,
pp. 43-54

[Levoy96] Mark Levoy and Pat Hanrahan. Light-field rendering. In Computer
Graphics, Annual Conference Series, 1996, pp. 31-42

[Tsai86] Roger Y. Tsai. An Efficient and Accurate Camera Calibration
Technique for 3-D Machine Vision. In CVPR, pp. 364-374, 1986.

[Tsai87] Roger Y. Tsai.A versatile Camera Calibration Technique for High-
Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses. In IEEE Journal of Robotics and Automation, Vol. RA-
3, No. 4, August 1987, pp. 323-345

[Weng92] Juyang Weng, Paul Cohen, and Marc Herniou. Camera Calibration with
Distortion Models and Accuracy Evaluation. In IEEE Transitions on
Pattern Analysis And Machine Intelligence, Vol.14, No. 10, October 1992, pp.
965-980

[Yang00] Jason C. Yang. A Light Field Camera for Image Based Rendering.

[Zhang99] Zhang, Z.Y. Flexible Camera Calibration by Viewing a Plane from
Unknown Orientations. In ICCV, pp. 666-673, 1999.

34

APPENDIX A

A.1 Image Extraction Source Code

PROG_FI ND. M
di sp(' Loadi ng i mage...")
Img = imead(' NEWWH TE. tif');
fit_all _circles;
PROG_CONFI RM M
di sp(' Loadi ng i mage...")

Img = imead(' NEWWH TE. tif');

theta = |inspace(0, 2*pi, 100);
costheta = cos(theta);
sintheta = sin(theta);

fid = fopen('result.txt',"'r");

while (~feof (fid))
j fscanf(fid, %l',1);
i fscanf(fid, %', 1);
X(j,i) = fscanf(fid,"%"',1); %top left x
y(j,i) = fscanf(fid,"%"',1); %top left y
lengthx(j,i) = fscanf(fid,"%"',1); %length x
lengthy(j,i) = fscanf(fid,"%"',1); %length y

sx(j,i) = fscanf(fid,"%"',1); %center X
sy(j,i) = fscanf(fid,"%"',1); %center y
sr(j,i) = fscanf(fid,"%\n',1); %radius

end

fclose(fid);

quit = 0;

while(quit == 0)

% draw circles
i mshow(| ng) ;
for j=1:11
for i=1:8
hold on; plot(sx(j,i) + sr(j,i)*costheta, sy(j,i)
+ sr(j,i)*sintheta, 'r'); hold off

35

hold on; plot((sx(j,i)), (sy(j,i)), 'r+); hold
of f
end
end
dr awnow,

di sp(' Press a key when you have found a error or there
is no nore.")
pause

disp('If a circle you see is off, then click inside the
circle')

di sp(' O herwi se click anywhere that is not inside any
circle')

pt = ginput(1l);
ptx = pt(1);
pty = pt(2);
I
11
fo

((sx(j,i) - ptx)*(sx(j,i) - ptx) + (sy(j,i) -

18
(
- pty)) < sr(j,i)*sr(j,i))

it (jj~=0)
disp("dick on the top left point and bottom right
point to define the new circle')
tl = ginput(l);
br = ginput(1);
tlx tl(1);
tly t1(2);
br x br(1);
bry = br(2);

sx(jj.ii) = (tlx+brx)/2;

sy(jj.,ii) = (tly+bry)/2;
sr(jj,ii) = (((brx-tIx)/2)+((bry-tly)/2))/2;

el se

quit = 1;
end

36

end

fidw = fopen('result-confirned.txt','w);
for j=1:11

for i=1:8

fprintf(fidw,'% % % % % % % % %\n',

[i i, x(j,i),y(j,i),lengthx(j,i),lengthy(j,i),sx(j,i),sy(j.i)
sr(i,i)l);

end
end
fclose(fidw;

disp('"Witten to result-confirned.txt');

PROG GET_REF_PQO NTS. M
di sp(' Loadi ng i mage...")
Img = imead(' NEWWH TE. tif');
figure;
i mshow(| ng) ;
dr awnow
[tl, bl, tr, br] = find_four_points;
fid = fopen('refpoints.txt',"'w);
fprintf(fid,'9% %\n', [tl (2)1)
fprintf(fid,'9% %\n', [bl(1), bl(2)]);
fprintf(fid,'9% %\n', [tr(l), tr(2)]);
fprintf(fid,'9% %\n', [br(l), br(2)]);
fclose(fid);

PROG_EXTRACT. M
function prog_extract(nane)
nkdi r (name) ;
filenane = strcat(name,'.tif'");
% | oad ref points
fid = fopen('refpoints.txt',"'r");

X
y

fscanf(fid,'%"',1);
fscanf(fid,'%"',1);

37

ref_tl =[x vy];

x = fscanf(fid,"%"',1);
y = fscanf(fid,"'%"',1);
ref_bl =[x vy];

x = fscanf(fid,"%"',1);
y = fscanf(fid, %', 1);
ref_tr =[x vy];

x = fscanf(fid,"%"',1);
y = fscanf(fid,"'%"',1);
ref_br =[x y];

fclose(fid);
% finish | oading ref points

di sp(' Loadi ng i mage...")

Img = inread(fil enane);
figure;

i mshow(| ng) ;

dr awnow;

[tl, bl, tr, br] = find_four_points;

% average the difference of the four points
diff = ((tl + bl +tr + br) - (ref_tl + ref_bl + ref_tr +
ref_br)) / 4

W _diff = (tI(1l) - ref_tl(1) + bl(1) - ref_bl(1) + tr(l) -
ref _tr(1) + br(1) - ref_br(1)) / 4
Wy _diff = (t1(2) - ref_tl1(2) + bl(2) - ref_bl(2) + tr(2) -
ref tr(2) + br(2) - ref_br(2)) / 4

di sp(' Resi ze so that you see all the lens');
pause

fid = fopen('result.txt','r");

cd(name) ;

theta = |inspace(0, 2*pi, 100);
costheta = cos(theta);
sintheta = sin(theta);

while (~feof (fid))
i fscanf (fid, %', 1);
i fscanf(fid, %', 1);

38

X fscanf(fid, '9%',1); %top left x

y fscanf(fid, " 9%',1); %top left vy
lengthx = fscanf(fid,"%"',1); %length x
lengthy = fscanf(fid,"%"',1); %length vy
sx = fscanf(fid,"%"',1); %center x

sy = fscanf(fid,"%',1); %center y

sr = fscanf(fid,"%\n',1); %radius

CX = SX - X;
Cy =sy -Yy

% nmodify x,y to reflect the shift of the inmage
X =x + diff(1);

y =y +diff(2);

sx = sx + diff(1);

sy = sy + diff(2);

% draw the circle (adjusted)

hold on; plot(sx + sr*costheta, sy + sr*sintheta, 'r');
hol d of f

hold on; plot((sx), (sy), 'r+"); hold off

dr awnow

if (y<0)
Subl nmg = uint8(zeros(round(lengthy), round(lengthx),
3));
Subl ng(round(2. 0-y):round(l engt hy), 1:round(l engthx),
:) = Img(1l:round(y)+round(l engthy)-1
round(x):round(x)+round(l engt hx)-1, :);
el se
Subl ng = I ng(round(y):round(y)+round(l engthy)-1

round(x):round(x)+round(l engthx)-1, :);
end

outfilel = strcat('ing' ,int2str(j),"-
nt2str(i),".tif");

% now, mask it with a circle at sx,sy with radi ous sr

di sp(' Creating imge...")

nunpoi nts = 50;

i ncrenment = (2*pi)/ nunpoi nts;

angl es = linspace(increnent, 2*pi, nunpoints);
col cos(angl es) *sr +cx;

row = sin(angl es)*sr +cy;

bw = roi pol y(Subl ng, col , row);

39

bw2(:,:,1) = bw
bw;
bw;

Subl ng(bw2==0) = O;

di sp(strcat('Witing..." ,outfilel,"..."))
i mwite(Sublng, outfilel);

end

fclose(fid);

cd('..");

FI ND_FOUR PO NTS. M
function [tl, bl, tr, br] = find_four_points()

% Assunes inmage is already |oaded and is displayed as a
figure

di sp(' Pl ease resize wi ndow and zoomclose to the top |eft
poi nt and press any key')

pause

disp("dick on the top left point')

tl = ginput(l);

di sp(' Pl ease resize wi ndow and zoom cl ose to the bottom | eft
poi nt and press any key')

pause

disp("dick on the bottomleft point')

bl = ginput(1);

di sp(' Pl ease resize wi ndow and zoom close to the top right
poi nt and press any key')

pause

disp("dick on the top right point')

tr = ginput(1);

di sp(' Pl ease resize wi ndow and zoom cl ose to the bottom
right point and press any key')
pause
disp('dick on the bottomright point')
br = ginput(1);
FIT_ALL_Cl RCLES. M

figure;

40

i mshow(| ng) ;
dr awnow

di sp(' This program assunes that the inmage array is 11x8")
di sp(' Pl ease resize wi ndow and zoomclose to the 4 top |eft
corner lens, and press a key')

pause

di sp(' Pl ease pick the center of the 4 top left corner lens')
tl = ginput(l);

di sp(' Pl ease resize wi ndow and zoom cl ose to the 4 bottom
right corner lens, and press a key')

pause

di sp(' Pl ease pick the center of the 4 bottomright corner

| ens')

br = ginput(1);

di sp(' Pl ease resize wi ndow so that everything is in view,
and press a key')

pause
tlx =tl(1)
tly = tl1(2)
brx = br(1)
bry = br(2)
lengthx = (brx-tlx)/6
lengthy = (bry-tly)/9
X =tlx - lengthx
y =tly - lengthy
theta = |inspace(0, 2*pi, 100);
costheta = cos(theta);
sintheta = sin(theta);
fid = fopen('result.txt',"w);
for j=1:11
for i=1:8
di sp(sprintf('Fitting circle (%, %)...", j, 1))
if (y<0)

Subl ng = I ng(1: round(y+l engt hy-1),
round(x): round(x+l engthx-1), :);
el se
Subl ng = I ng(round(y):round(y+l engthy-1),
round(x): round(x+l engthx-1), :);
end

[ex,ey,er] = fit_one_circle(Sublng);

41

sy = ey
el se

sy =y +ey -1
end
SX = X +ex - 1
sr = er

fprintf(fid,'% %l % % % % % % %\n',
[j,1,X,y,lengthx,|engthy,sx,sy,sr]);

hold on; plot(sx + sr*costheta, sy + sr*sintheta,
"r'); hold off

hold on; plot((sx), (sy), 'r+"); hold off

dr awnow

X = X + | engthx;

end
X = tlx - lengthx;
y =y + |lengthy;
end
fclose(fid);

disp('"Witten to result.txt');
GRAD_| MG M
function E = grad_ing(l);

H
E

fspeci al (' sobel");
sgrt(filter2(H 1).72+filter2(-H ,1)."2);

Cl RCLE_HOUGH. M

function Counts = circle_hough(l, cx_range, cy_range,
r_range)

ncx = | ength(cx_range);
ncy = length(cy_range);
nr = | ength(r_range);

Counts = zeros([ncx ncy nr]);

for i=1:nr
r=r_range(i);
t heta I i nspace(0, 2*pi, round(2*pi *r));
rcthe r*cos(theta);
rsthe r*sin(theta);

[CX, CY] = ndgrid(cx_range, cy_range);

42

CX=CX(:);

Cy=CY(:);

X = round(repmat (rcthe,l engt h(CX), 1) +
repmat (CX, 1, ength(theta)));

Y = round(repmat (rsthe,l ength(CY), 1) +
repmat (CY, 1, l ength(theta)));

good = find(X>0 & X < size(l,2) &Y >0 &Y < size(l,1)
)

i nd = sub2ind(size(l), Y(good), X(good));

Sanpl es = zeros(size(X));

Sanpl es(good) = I (ind);

cnts sum(Sanpl es, 2);

cnts reshape(cnts, [ncx ncy]);

% i magesc(cnts), col orbar
% drawnow
Counts(:,:,i) = cnts;

end

A.2 Radial Undistortion Source Code

PROG_UNDI STORT4. M
function prog_undi stort4(nane)
prog_undi stort (' cal 0", nane);
prog_undi stort('cal 1, nane);
prog_undi stort('cal 2', nane);
prog_undi stort (' cal 3', nane);
PROG_UNDI STORT. M
function prog_undistort(D R, nane)
| MAGE = strcat(name,'.tif'");
QUTI MAGE = strcat(name, DIR ' .tif");
9BMPI MAGE = strcat(nane, DR, ' . bnmp');
% maxi mum si ze of grid
GRI D_SI ZE = 20;
THRESH HOLD = 2;
img = inread(strcat (DR "\\',IMAGE));

ss = size(size(ing));

43

if (ss(2)==2)

graying = ing;
el se

grayi mg = rgb2gray(ing);
end

| = -doubl e(grayi ng);
di sp(' threshol ding image...")
T = threshol d_i ng(1l, THRESH HOLD) ;

% guess the | abels

di sp('l abeling objects...")
pts = | abel _objects(T);
nunpl ot (pts);

% ask the user to pick two points

col ormap cool ;

i mgesc(T);

nunpl ot (pts);

di sp(' Pl ease pick the center of 2 squares that are side by
side to each other')

two_points = ginput(2);

% find the cl osest pts to the ones the user sel ected
D = sqdist(pts(:,1:2)",two_points');
[val, marker_ind] = mn(D);

% calculate min and max areas for the circles
pointl = pts(marker_ind(1), 1:2);

poi nt 2 pt s(marker _ind(2), 1: 2);
areal pts(marker _ind(1), 3);
area? pts(marker _ind(2),3);

di st = sun{(point1-point2)."2)."0.5;
area = (areal + area?2) / 2;

nmaxar ea
m nar ea

= area * 1.4

= area * 0.6

% | abel with the correct min and max areas
di sp('l abeling objects again...")

pts = | abel _objects(T, m narea, maxarea);
nunpl ot (pts);

% Use only the y and x coordi nates

points = pts(:,[2 1]);

% Cal cul ate the grid

grid = points2grid(points, dist, GRID SIZE, size(ing))

%lo the optim zation

di mensi on = size(l);
hei ght = di mensi on(1);

44

wi dt h = di nensi on(2);

% = -.0000015;

k = 0;

guess = [(height+1)/2 (width+1)/2 k];

% optimnmze
optimzed = Isqnonlin('vector_optimze', guess, [], [1, [
], dist, points, grid);

cy = optimzed(1);
cx = optimzed(2);
k = optimzed(3);

Y% wite distortion val ues
fid = fopen(strcat (DR "\\',nanme,’' _coeff.txt'),'w);

fprintf(fid,'% % 9%.12f', [cx, cy, K]);
fclose(fid);

% undi stort i mage
outing = undistort_imge(inmg, cx, cy, k);

% i gure; inmshow(ing);
% i gure; inmshow(outing);

di sp(' Witing output inages...")
imwite(outing, strcat(D R "\\', QUTI MAGE)) ;
% mwite(outing, strcat(D R '"\\', BMPI MAGE)) ;

THRESHHOLD _| MG M

function [TlI, Th] = threshol d_i ng(i ng, nbl ocks)

YTHRESHOLD | M5 Automatically threshold inmage in to objects
and background based on | ocal edge intensity.

% Tl , Th] = threshol d_i ng(i ng, nbl ocks)

% returns high and | ow thresholds for inage segnentation
% = threshol d_i ng(i ng, nbl ocks)

% returns threshol ded i mage

if nargin < 2, nblocks = 10; elseif isenpty(nblocks),
nbl ocks = 10, end;

% ind threshold by | ooking at average edge intensity
I = inresize(ing,.25);

di sp(' edge detection')

[bw, t hresh] = edge(l,' zerocross');

E=1;

E(~bw) =0;

bsiz = bestbl k(size(l), max(size(l))/nblocks);

45

tm = bl kproc(E, bsi z," mean([x(find(x));0])");
tm(find(tm=0))=rmax(tn(:));

i f(any(size(tm>5)),
tm= conv2(tmfspecial ('gaus',1.5)," " sanme');
end

di sp(' resize and renorm)

tm= inresize(tmsize(ing), bilinear');

% sdv =

bl kproc(E, bsi z,' repmat (std([x(find(x));0]),size(x))');
% m = nean(i ng(bw));

tsdv = std(ing(bw));

T =tm- tsdv./2;

Th = tm+ tsdv./?2;

%l = kron(Tl,ones(2,2));
%h = kron(Th, ones(2,2));
if nargout == 1

% ormalize
G=(ing-Tl)./(Th-Tl);

Y%set all pixels greater than Th to 1
gfind(G> 1)) = 1;

Y%set all pixels less than Tl to O

G find(G< 0)) = 0;

[mn] = size(Q;

q1,:) =1,

gm:) = 1

q:,1n) =1,

q:,n) =1,

T =G

Th =[];
end

LABEL_OBJECTS. M

function pts = | abel _objects(ing, Am n, Amax)

% coords = | abel _objects(inmg, Th, TI, Amn, Anmax)

% inmg is the imge of the test pattern,

% Amin and Amex are the min and max area of an object.
% returns the coords of the centriods of the objects.

inf, end
0, end

if (nargin < 3), Amax
if (nargin < 2), Amn

di sp(' bwror ph cl ean')
B=ing > 0;

46

B = bwmor ph(B, ' cl ean');
i magesc(B)
dr awnow;

di sp(' bwl abel ")

L = bw abel (B, 8);

i mgesc(L) % col orbar
dr awnow

di sp('index reorder')

K= find(L(:));

%reate matri x i ndexed by | abe
Lind = sparse(K, L(K),inmg(K));

Avec
good

sum(Lind, 1);
find(Avec > Amin & Avec < Anax);

Y%real | ocate some of the result structure in advance
% he coluns are xcoord, ycoord, and Area, and nonents.
pts = zeros(l ength(good), 9);

di sp(' monment cal cul ations')
nun¥0;
for i = good

num = numtl,

ind = find(Lind(:,i));

[1,J] = ind2sub(size(ing),ind);

%al cul ate area and centroid

A = Avec(i);
x = sum(inmg(ind).*J/A);
y = sunm(ing(ind).*l/A);

% ind the higher order invariant nonents
% vm =

af fine_invariant_nonments(inmg(mn(l):max(l),mn(J):max(Jd)))
% vnR = affine_invariant_nonents(ing(ind)>0,J,1)"

Ypts(num 1:9) = [X,y,A ivnR(:)'];
pts(num 1:3) = [x,y, Al
end

pts = pts(1l:num:);
num

SQDI ST. M

function D = sqdi st (X1, X2)

47

% conmput es the di stance b/w every pair of colum vectors in
X1, and X2;

if nargin ==
X2 = X1;
end

size(X1, 2);
size(X2, 2);

repmat (sum(X1.72)',1, M;
repmat (sun{X2.72) , N, 1);
X1' * X2;

S

= X11 - 2*X12 + X22;
PO NTS2GRI D. M

function grid = points2grid(pts, distance, gridsize,
i ngsi ze)

Y% pts is [y X]

center = [ingsize(l)/2 ingsize(2)/2];
center_grid = [round(gridsize/2) round(gridsizel/?2)];

D = sqdist(pts',center');
[val, center_marker] = m n(D);

%lnitialize grid to all zeroes of gridsize by gridsize
grid = zeros(gridsize,gridsize);

% Set the center position to center_marker
grid(center_grid(1l), center_grid(2)) = center_narker

% Recurse right

grid = findnext(pts, grid, distance, center_grid, [0 1],
pts(center_marker,:), [0 distance]);

% Recurse right

grid = findnext(pts, grid, distance, center_grid, [0 -1],
pts(center_marker,:), [0 -distance]);

% For each grid position found in the center horizontal I|ine
for x = 1:gridsize
marker = grid(center_grid(1l), x);
i f (marker~=0)
% Recurse up
grid = findnext(pts, grid, distance,
[center_grid(1l) x], [1 0], pts(marker,:), [distance 0]);
% Recur se down

48

grid = findnext(pts, grid, distance, [center_grid(1)
x], [-1 0], pts(marker,:), [-distance 0]);
end
end

FI NDNEXT. M

function newgrid = findnext(pts, grid, distance, gridpos,
grid_direction, ingpos, ing_direction)

newgrid = grid,
gridsize = size(grid);

new gridpos = gridpos + grid_direction
new_i ngpos = ingpos + ing_direction

% Only do it if the newgrid position is inside the grid
if (new_gridpos(1l)>=1 & new gridpos(1l)<=gridsize(l) &
new _gridpos(2)>=1 & new_gridpos(2)<=gridsize(2))

% find the cl osest point to the estimated point

D = sqdi st(pts', new_i ngpos');

[val, marker] = m n(D);

%if the marker of the new point is not equal to the
previ ous one.
if (marker ~= grid(gridpos(1l), gridpos(2)))
poi nt _mar ker = pts(marker,:);
d = sun((poi nt_marker-new_i ngpos) . *2)."0. 5;
%if the new point is close enough to the estimated
one
if (d < distance*0.6)
% Set the new grid point
newgri d(new_gridpos(1), new gridpos(2)) = marker
% keep on recursing in the same direction
% but this time use point_marker-ingpos as the
i mage direction
% Because of the distortion in the inmage
poi nt _mar ker-ingpos is going to be nore slanted than
i mg_direction
% which is what we want. it will be a
better estimate for the next point
newgrid = findnext(pts, newgrid , distance,
new gridpos, grid_direction, point_marker, point_narker-
i ngpos) ;
end
end
end

VECTCR_OPTIM ZE. M

49

function error = vector_optimze(in, distance, pts, grid)

cy =in(1);
cx =1in(2);
center = [cy cX];
k =in(3);

gsi ze = size(grid);

% undi stort the points
points = mat_undi stort_points(pts, center, Kk);

error =1[];

% for each horizontal line in the grid
for y =1 : gsize(l)

line = grid(y,:);

% get all non zero el enents

line [ine(line>0);

line poi nts(line,:);

s = size(line);

%if at least 5 el ements

if (s(1)>=5)
% throw away the 2 end points (they m ght be outliers)
% line = line(2:s(1)-1,:);
%fit line and grab the error (residue)
[coeff res] = linefit(line);
error = [error; res];
end
end
% for each vertical line in the grid

for x =1 : gsize(2)
line = grid(:,x);
% get all non zero el enents
line [ine(line>0);
line points(line,:);
s = size(line);

%if at least 5 el enments

if (s(1)>=5)
% throw away the 2 end points (they m ght be outliers)
% line = line(2:s(1)-1,:);
%fit line and grab the error (residue)
[coeff res] = linefit(line);
error = [error; res];
end

50

end

%i sp(sprintf('func: center = (9%9.3f, 9%0.3f), k = 99. 9f,
error = %', cy, cx, k, sumerror)))

LINEFIT. M
function [I,residue] = linefit(P)
% Pis amtrix of size n by 2, which is of the form
% [x1 yl; x2 y2; ... xn yn] which are the points you want
%to fit

%1 is a vector [a b c] which is the best fit line
% of the form ax+by-c=0

% residue is proportional to the error (variance?)

[mn] size(P);

if n~=2, error("matrix P nmust be mx 2'),end

if m< 2, error ('Need at least two Points'), end
one = ones(m1);

% p = centroid of all the points in P

p = (P *one)/m

% matrix of centered coordinates

Q = P-one*p’;
[USigma V] = svd(Q;
n=V_:,2),;

I=1[np *n];

resi due = Sigma(2,2);
UNDI STORT_| MAGE. M
function outing = undistort_imge(ing, cx, cy, k)
di mensi on = size(ing);
hei ght = di mensi on(1);
wi dt h = di mensi on(2);
col ordepth = di nensi on(3);

center = [cy cX];

all =img | 1;
all =all(:,:,1);
points = line2points(all);

outing = inRuint8(ones(height, w dth, col ordepth));
poi nts_before = mat _di stort_poi nts(points, center, Kk);

% renove all the indices that are out of bounds

ol

poi nts = poi nts(1l<=points_before(:,1) &

poi nts_before(:, 1) <=height & 1<=points_before(:,2) &
poi nts_before(:,2)<=width,:);

poi nts_before = points_before(l<=points_before(:,1) &
poi nts_before(:, 1) <=height & 1<=points_before(:,2) &
poi nts_before(:,2)<=width,:);

y_before = points_before(:,1);
X_before = points_before(:, 2);
y = points(:,1);
X = points(:, 2);

y_before_fl oor
X_before fl oor
y_before_cei
X_before_cei

floor(y_before);
fl oor(x_before);
ceil (y_before);
ceil (x_before);

i nd = sub2i nd(di mrension, y, x);

ind_ff = sub2ind(di nension, y _before_floor, x_before_floor);
i nd_fc = sub2ind(di nmension, y_before_floor, x_before_ceil);
i nd_cf = sub2ind(dinmension, y before_ceil, x_before_floor);
i nd_cc = sub2ind(dinmension, y_before_ceil, x_before_ceil);
ind_ 4 =[ind_ff, ind_fc, ind_cf, ind_cc];

x_f = x _before - x_before floor

x c =1 - x_f;

y f =y before - y_ before_floor

yc=1 -y f;

factor_4 =[y_c, y_c, y f, y f] .* [x_c, x_f, x_c, x_f];

for i = 1:col ordepth
img_temp = inmg(:,:,1);
inmg_4 = double(inmg_tenmp(ind_4));
% linearly interpolate
outing_tenp = inRuint8(ones(height, width));
outing_tenp(ind) = uint8(round(sum(ing_4.*factor_4, 2)));

outing(:,:,i) = outing_tenp;
end

MAT_UNDI STORT_PA NTS. M

% Radi al undistortion for a matrix of points

52

function points_out = mat_undi stort_points(points_in
,center, k)

dirs = points_in - repmat(center,size(points_in,1),1);
sgr_dirs = dirs."2

rp = sqgrt(sqgr_dirs(:,1) + sqgr_dirs(:,2));

r = mat_undistort(rp, k);

f

(r ./ rp);
f

repmat (f, 1, 2);
dirs =dirs .* f;
poi nts_out = repmat(center,size(dirs,1),1) + dirs;
MAT DI STORT_POI NTS. M
% Radi al distortion for a matrix of points
function points_out = mat_distort_points(points_in ,center
k)
points_out = points_in;
dirs = points_in - repmat(center,size(points_in,1),1);
sgr_dirs = dirs."2

rp_t = sqgrt(sqgr_dirs(:,1) + sqgr_dirs(:,2));

rp = rp_t(rp_t>0);
dirs = dirs(rp_t>0,:);

r = mat_distort(rp, Kk);
f =(r ./ rp);
f = repmat(f,1,2);

dirs =dirs .* f;
points out(rp_t>0,:) = repmat(center,size(dirs,1),1) + dirs;
MAT_UNDI STORT. M

% Radi al undistortion for a matrix
function r = mat_undistort(rp, k)

53

if k==0

r=rp;
elseif k >0

nrp =rp * 3.0;
1.0/ (6.0 * k);

d =sgrt(nrp .* nrp + 8.0 * t);
r = ((nrp +d) *t).~N(2/3) - ((d - nrp) * t).~(1/3);
el se
t =sqrt(-1.0/ (3.0 * k));
d=-15*rp/ t;
for i = 1:size(d, 1),
if abs(d(i)) > 1.0
% di sp(' ERROR undistort error');
if d(i) >= 0.0
d(i) = 1.0;
el se
d(i) =-1.0;
end
end
end

rr=-2.0*1t * cos((acos(d) + pi) / 3.0);
end

MAT_DI STORT. M

% Radi al distortion
function rp = mat _distort(r, k)

rp =r +k * r."3;
LI NE2PO NTS. M
function points = line2points(line)

[a b] = find(line);
points = [a,b];

o4

