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Abstract

This thesis describes a scalable robotic navigation system that builds a map of the
robot’s environment on the fly. This problem is also known as Simultaneous Local-
ization and Mapping (SLAM). The SLAM problem has as inputs the control of the
robot’s motion and sensor measurements to features in the environment. The de-
sired output is the path traversed by the robot (localization) and a representation of
the sensed environment (mapping). The principal contribution of this thesis is the
introduction of a framework, termed Atlas, that alleviates the computational restric-
tions of previous approaches to SLAM when mapping extended environments. The
Atlas framework partitions the SLAM problem into a graph of submaps, each with
its own coordinate system. Furthermore, the framework facilitates the modularity of
sensors, map representations, and local navigation algorithms by encapsulating the
implementation specific algorithms into an abstracted module. The challenge of loop
closing is handled with a module that matches submaps and a verification procedure
that trades latency in loop closing with a lower chance of incorrect loop detections
inherent with symmetric environments. The framework is demonstrated with several
datasets that map large indoor and urban outdoor environments using a variety of
sensors: a laser scanner, sonar rangers, and omni-directional video.
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Chapter 1

Introduction

The problem of simultaneous localization and mapping (SLAM) is to enable a mobile

robot to build a map of its environment, while simultaneously using this map to

navigate. This thesis addresses two key shortcomings of previous SLAM algorithms:

scale and modularity. It demonstrates a SLAM algorithm that can cope with large-

scale, cyclic environments, and a single, unified SLAM architecture that has been

successfully applied to a variety of different input sequences, including laser, sonar,

and omnidirectional video data.

1.1 The Simultaneous Localization and Mapping

Problem

The Global Positioning System (GPS) has revolutionized localization. Developed in

the 1970s and 80s, GPS provides the user with an earth relative position and velocity

estimate to sub-meter accuracy under certain conditions. However, knowing one’s

location in an arbitrary coordinate system has little value without a map that links

these coordinates to a representation of the environment.

Together, a localization system and maps allow individuals to navigate success-

fully. Nevertheless, there are limitations to the efficacy of the integration of maps

and localization. GPS functions fully only in outdoor locations with good visibility
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to satellites. It is not practical for use indoors, underground, underwater, in urban

canyons, or on planets lacking GPS satellites. Maps are highly dependent on in-

tensive human labor for their construction and are limited by the models used to

represent the features of the environment on any given map. Thus, while localization

and mapping are basic aspects of successful navigation, their effective integration and

application remains a significant challenge in many areas.

In mobile robotics, localization and mapping are fundamental requirements for

applications such as exploration, path planning, and dynamic object tracking. In

order to effectively accomplish tasks in which they interact with their environments,

robots need to know where they are. However, this knowledge of position is meaning-

less without a map that relates the robot’s location to its environment. Autonomous

vacuum cleaners, supermarket floor washers, and tour guide robots [7] are examples

of existing mobile robots that navigate based upon maps.

These maps can be provided to the robot ahead of time or simultaneously gener-

ated by the robot while localizing. This latter form of mapping is both more desirable

and more challenging. A priori maps often do not exist or are incomplete, inaccurate,

or inadequate for a robot’s needs, while robots with the ability to self-generate maps

are able to explore previously unmapped areas. Furthermore, an internally generated

map will generally be more up-to-date than one previously produced. The challenge

ensues when a robot must localize concurrently with mapping. Individually, mapping

and localization are straightforward tasks accomplished with bounded complexity.

When coupled, the complexity growth of these tasks can escalate in an unbounded

manner. Overcoming this hurdle is a key to expanding the future of mobile robotics.

In the robotics community, the task of a robot building a map and simultaneously

localizing from it is commonly referred to as Simultaneous Localization and Mapping

(SLAM). Most current SLAM implementations are limited by the size and type of

the environments they can handle. There are few existing algorithms that work

well in large-scale environments; however, there are several notable active projects

that seek to tackle large-scale mapping, including the mapping of abandoned coal

mines [55], searching the ocean for explosive mines [43, 33], and capturing models of
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entire cities [52].

This thesis approaches large-scale SLAM from a different perspective. Rather

than develop a system in which all components are tightly integrated and therefore

dependent upon each other, it is possible to separate the dependencies into modules.

This method of operation allows for flexibility and variety in implementing SLAM so-

lutions. This thesis proposes a system for encapsulating existing SLAM solutions for

small-scale environments within a framework that allows them to be applied to large-

scale SLAM problems. This modular framework also precludes a dependence upon

a single choice for sensor or map representation, further facilitating the implementa-

tion of different SLAM systems. To accomplish this, each of the major challenges to

achieving real-time SLAM must be addressed.

1.2 Challenges

The challenges to achieving successful SLAM are varied and often interconnected.

Sensor, model, and mapping variety have lead to a hodgepodge of methods for ap-

proaching SLAM. The need to map large-scale environments complicates SLAM and

further exacerbates issues such as coupled uncertainty, loop closing, and loop valida-

tion. An effective large-scale SLAM framework must address these challenges.

Model variety makes SLAM more difficult. Differences in sensor measurement,

robot dynamics, and map representation models convolute efforts to implement a

unified and systematic approach to SLAM. Two basic classes of sensors, propriocep-

tive and mapping, are utilized in SLAM. Proprioceptive sensors directly measure a

robot’s relative motion using gyroscopes, accelerometers, wheel odometers, and steer

angle sensors. Robots like ground rovers and water surface crafts move only in 2D

with rotations. Robots with 6 degrees of freedom (DOF) of motion capabilities, such

as aircraft, helicopters, underwater vehicles, and hand-held cameras, can access more

environments. Because proprioceptive sensors measure only relative motion of the

robot, they lead to unbounded growth in localization error.

Mapping sensors measure properties of the environment relative to the robot.
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They can be used to correct the unbounded dead-reckoning errors of proprioceptive

sensors by re-observing previously mapped features. These mapping sensors may be

active or passive and measure bearing, range, or both. For example, a camera is a

passive, bearing-only sensor, whereas a sonar ranger is an active, range-only sensor.

The most useful sensors measure both range and bearing. A common example of

a fully observable sensor is a laser scanner, which can measure all of the modeled

degrees of freedom of an environment features from a single pose. However, sensors

that observe only partial DOF of the environment’s features require that multiple

measurements from different positions be combined in order to obtain a complete

view of structure in the scene. With mapping sensors it is necessary to interpret the

data correctly, which means having an appropriate model for observations of features

in the environment.

A final form of model variety inherent within SLAM is map representation. The

environment and the set of available sensors determine the choice of map representa-

tion. Feature-based maps [47] work best in structured or sparse environments in two

or three dimensions. Evidence grids [40, 46] are most effective in small unstructured

2D environments, particularly when using fully observable sensors [12].

Each particular implementation of SLAM will have its own criteria for determin-

ing which models will be used. These criteria must take into account the types of

sensors available and environment to be mapped. Given that the process of mapping

environments with robots is not deterministic, uncertainties exist in all of the models

described above. These uncertainties themselves must be modeled with probabilities

and reasonable assumptions must be made on the chosen error distributions. If errors

in sensor measurements, robot dynamics and map fidelity are kept small, then it is

possible to use a Gaussian noise assumption with linearized models. Unfortunately,

in the real world, models are nonlinear and errors are often large or not Gaussian.

Although Gaussian distributions can be fit to nonlinear models when the errors are

small, the linearizations are no longer accurate when these errors become large. Non-

Gaussian errors include multi-modal errors that occur, for example, from mistakes in

matching during data association.
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Another major challenge in SLAM arises from the coupling of sensor and robot

uncertainties. Coupling occurs when noisy sensor measurements are taken from un-

certain robot poses. This coupling is most apparent between two mapped features.

If there were no uncertainty in the robot pose when mapping the features, then the

errors of the features would be independent from one another. However, since both

features are mapped from the same uncertain robot, their errors are linked. For ex-

ample when the robot makes a subsequent measurement on one feature, it improves

the knowledge of the robot’s pose and hence consequently improves also the posi-

tion of the second feature. This coupling is represented, when using Gaussian error

distributions, as non-zero off-diagonal covariance matrix elements which cannot be

ignored.

Large scale environments exacerbate the obstacles to SLAM by increasing the

computational requirements. Often SLAM algorithms do not have constant time

complexity per update. (Other constant time SLAM algorithms exist; however, they

either don’t close loops [39] or make global linearization assumptions [56]) As new

parts of the environment are mapped, their errors are coupled through the uncertain

robot position to the errors of all the other mapped parts. Subsequently, when re-

observing old parts of the map, all the coupled parts of the map will also need to be

updated. Thus the computation required to process each measurement increases as

the size of the map increases, unless some steps are taken to limit the coupling.

As noted above, the map elements and the robot poses are statistically coupled,

and even in the simple Gaussian case, all the cross-covariances need to be maintained.

(The cross-covariances are significant even if the features are not co-visible). Since

the estimated errors of all the map elements are correlated, processing each sensor

measurement results in at least a quadratic growth in memory and computation as the

size of the map increases. The challenge is to develop valid approximations such that

not all correlations among robot and map elements need to be maintained. Ideally,

the computational time should remain nearly constant per sensor measurement, and

the memory required should grow nearly linearly with the size of the map.

Another challenge inherent with mapping extended environments is the need to
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close loops when revisiting previously mapped areas. The difficulty arises since the

robot may take a long time and travel a significant distance before revisiting the area

from which it started. Hence the open-loop uncertainty can be quite large and it will

perhaps even be difficult for the robot to recognize that it is in a previously mapped

region.

There are two algorithmic elements to loop closing. The first is data association,

or, recognizing when a loop can be closed. The second element is incorporating the

effects of a loop closure into the SLAM system state. The difficulty in data association

is that the recognition of revisited areas in a particular environment is dependent upon

both the growth of uncertainty in local mapping and the richness of the local map

representation. A slower uncertainty growth enables the robot to traverse longer paths

before a mismatch between two nearby ambiguous regions occurs. Additionally, richer

maps are less likely to exhibit local symmetry and global ambiguity. The update of

a loop closure event is also challenging, especially if the prior uncertainty is large.

The update must be distributed in some manner around the loop if the map is to be

expressed in a single coordinate system. The error accumulated around the loop is

typically large and poorly modeled, therefore the process of distributing the residuals

of the loop-closing constraint can lead to inconsistencies or tears in the map. Also,

if all the map elements around an arbitrarily long loop must be updated, then the

computational burden for processing sensor measurements can no longer be bounded

by a constant factor.

Loop closure validation is necessary to mitigate the errors associated with loop

closing. There are two types of loop-closing errors: false positive matches and missed

detected matches. False positive matches are situations in which the robot erroneously

asserts that a loop has been closed; however, the inferred match is false. When

the environment contains repetitive structure or local symmetries, the detected loop-

closing map-matches may not be unique. Missed detections occur when a loop closure

has been missed due to failure to successfully match the current map with a previously

mapped area. Furthermore, the prior uncertainty of the robot before closing the loop

may be too large to identify the correct match. Even when there is only one candidate
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match, it is possible that the correct match has simply not been recognized yet and

the lone existing match is incorrect. The challenge for the algorithm is to verify loop

closure decisions before they are committed, to be certain that no mistakes are made.

1.3 Related Research

A review of related research reveals common issues in the field of SLAM. How various

methods address map and probabilistic representations, non-linearities, data associa-

tion, scaling, and loop closing highlights the strengths and weaknesses of the different

methods. Table 1.3 summarizes the key references in terms of the aforementioned

categories in a concise format. These previous research efforts will be referenced

throughout the remainder of the thesis.

Probabilistic techniques have proven vital in attacking the large-scale simultane-

ous localization and mapping problem. A variety of approaches have been proposed

for representing the uncertainty inherent to sensor data and robot motion, including

topological [30], particle filter [53, 39], and feature-based [48] models. Several success-

ful SLAM approaches have been developed based on the combination of laser scan

matching with Bayesian state estimation [27, 53]. All of these methods, however,

encounter computational difficulties when closing large loops.

The Kalman filter provides the optimal linear recursive solution to SLAM when

certain assumptions hold, such as perfect data association, linear motion and mea-

surement models, and Gaussian error models [48]. The convergence and scaling prop-

erties of the Kalman filter solution to the linear Gaussian SLAM problem are now

well-known (Dissanayake et al. [17]). Considerable recent research effort has been ex-

tended toward mitigation of the O(n2) complexity (where n is the number of features)

of the Kalman filter SLAM solution. Efficient strategies for SLAM with feature-based

representations and Gaussian representation of error include postponement [14], de-

coupled stochastic mapping (DSM) [31], the compressed filter [26], sequential map

joining [50], the constrained local submap filter [61], and sparse extended information

filters (SEIFs) (Thrun et al. [56]; Thrun et al. [55]). Each of these methods employs
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Researchers Map Rep. Nonlinear Data Association Scale
Global
Coord.

Loop
closing

Smith, Self, Cheesman [47] points EKF nearest no yes no

Semantic Map [30]
metric

topological
semantic

n/a n/a yes no no

Gutmann & Konolige [27] laser scans full optim ICP
yes

except loops yes yes

Sequential Map Joining [50] points & lines SP Map Joint Compatibility yes yes no

SEIFs [56] points EIF given yes yes no

FastSLAM [39] points
particle filter

EKF
given yes yes no

Sum of Gaussians [19] points
sum of

Gaussians
bayesian no yes no

Choset’s Voronoi [12] voronoi graph procedural n/a no yes yes

Postponement Filter [14] points EKF nearest no yes no

Compressed Filter [26] points EKF nearest yes yes no

Constrained Filter [61] points EKF nearest yes no yes

DSM [31] points EKF nearest yes yes no

Chong & Kleeman [11] points & lines EKF nearest yes no no

Atlas Laser Lines lines EKF nearest yes no yes

Atlas Sonar points & lines EKF nearest yes no yes

Atlas Scan-match scans EKF ICP yes no yes

Atlas Omni-video points & lines full optim nearest yes no yes
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a single, globally-referenced coordinate frame for state estimation. The Kalman filter

can fail badly, however, in situations in which large angular errors and significant

data association ambiguities invalidate the Gaussian error assumptions. The large-

scale linearization inherent in methods that use a single, global coordinate system for

error representation, such as SEIFs or DSM, will fail when closing large loops with

unbounded linearization errors.

In outdoor and underground environments, several SLAM algorithms have been

implemented for large scale datasets. Guivant and Nebot have published results for a

dataset acquired in Victoria Park, Sydney, Australia, using the compressed filter [26],

with an implementation that employs trees as “point” features. More recently,

Wang et al. [60] and Hähnel et al. [28] have achieved full 3D mapping of urban areas

with dynamic objects using scan-matching. Thrun et al. [55] have demonstrated

large-scale SLAM in a cyclic underground mine, also using scan-matching.

Some of the most successful experiments for autonomous loop closure in indoor

environments have been performed by Gutmann and Konolige [27]. One notable

feature of their work is the use of a hybrid metrical/topological map representation:

“A map is represented as an undirected graph: nodes are robot poses
with associated scans and links are constraints between poses obtained
from dead-reckoning, scan-matching, or correlation. [27]”

One of the appealing aspects of a hybrid metrical/topological approach to mapping

and localization [9, 30, 3, 12] is that uncertain state estimates need not to be referenced

to a single global reference frame. The strategy of partitioning a large map into

multiple smaller maps is intuitively appealing, both for its computational efficiency

and robustness. Chong and Kleeman [10] assert that “. . . the local mapping strategy

is devised . . . to improve efficiency and to curb the accumulated ‘inevitable errors’

from propagating to other local maps continuously.” The hybrid metrical/topological

approach models errors using Gaussian distributions only over local regions where

linearization works well, rather than representing the entire environment with one
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Gaussian distribution.

An alternative to the use of local linearization is the adoption of a fully nonlinear

formulation of the SLAM problem, such as FastSLAM [39] or SLAM using a sum of

Gaussians model [19]. The computational requirements of these methods, however,

remain poorly understood and uncharacterized in large cyclic environments. In future

research, it may be possible to implement one of these techniques as the local mapping

strategy within the Atlas framework.

1.4 Atlas Fundamentals and System Overview

This thesis introduces a SLAM framework, termed Atlas, for the metaphor of a book

with many adjacent maps. Atlas is a framework in which existing small-scale mapping

algorithms are used to achieve real-time performance in large-scale, cyclic environ-

ments. The approach does not maintain a single, global coordinate frame, but rather

an interconnected set of local coordinate frames, analogous to atlas pages. The rep-

resentation consists of a graph of multiple local maps of limited size. Each vertex in

the graph represents a local coordinate frame (and a local map expressed with respect

to that frame), and each edge represents the transformation between adjacent local

coordinate frames. In each local coordinate frame, a map is built that captures the

local environment and the current robot pose along with associated uncertainties.

Together, the map and the coordinate frame within which it is defined are referred to

as a map-frame. Figure 1-1 depicts a graph of map-frames in which two hypotheses

maintain the robot position.

The spatial extent of each map is not predefined. Instead, Atlas limits the com-

plexity of each map. An intrinsic performance metric of the local SLAM processing

determines whether to transition to an existing adjacent map-frame or generate a

new one. The map’s complexity is easily bounded by placing a hard limit on the
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Figure 1-1: A graph of three map-frames in which two maps (B and C) can express
the current robot position (R).

maximum number of features that can be inserted into the map. The performance

metric is based on the certainty of the current robot pose by measuring how well the

current robot pose and map are consistent with the current sensor readings.

Atlas is a generic framework which incorporates a variety of techniques as the

local mapping module. The approach assumes that a suitable local SLAM algorithm

exists that can produce consistent maps in small-scale (non-cyclic) regions with a

fixed amount of computation for each new sensor observation. The local SLAM

method may not incur an ever-growing computational burden, otherwise efficient

global performance is not possible. For example with laser scan-matching, if local

processing were based on the matching of a new sensor scan with all of the scans

obtained in a local region, then local map complexity, which grows linearly with

time, would not be bounded. Only a finite set of scans may be retained in any local
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region to ensure that the local SLAM processing time can be bounded by a constant

factor.

Each map’s uncertainties are modeled with respect to its own local coordinate

frame. The uncertainty of the edges (adjacency transformations) in the Atlas graph

are represented by a Gaussian random variable and are derived from the output of

the SLAM algorithm running in a local region. The framework limits the per-map

computation by defining a measure of complexity for each map-frame, which is not

allowed to exceed a threshold (the map capacity). Rather than operating on a single

map of ever-increasing complexity, the Atlas framework simply switches its focus to a

new or adjacent map-frame, when the current map frame grows too large or performs

poorly.

The Atlas graph encompasses new edges to close cycles via an efficient map-

matching algorithm. All the map representation based dependencies for matching

two sub-maps are contained in an implementation specific module, the Map-Matching

module, whereas the general framework indicates potential map matches for map-

frames that fall within an approximate uncertainty bound of the current map. The

framework computes these uncertainty bounds by integrating the coordinate trans-

formations and associated error estimates along a path formed by the edges between

adjacent map-frames. A background map projection process computes these paths

and error bounds by using a variant of Dijkstra’s shortest path algorithm [16].

The Atlas framework employs a verification step before integrating updates to

the graph. The verification delays the acceptance of a map-match until additional

map-matches are discovered that form a small consistent cycle in the graph. This

procedure effectively increases the area of overlap considered to make sure that the

map matches are not the result of ambiguous symmetries in the environment.
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1.5 Working Hypothesis and Contributions

The Atlas framework abstracts and decouples the details of each sensor suite and

environment characteristics from the mechanism for handling scale and loops. The

Atlas framework for large scale SLAM has been implemented for a variety of sensors

and tested in a variety of environments.

The first implementation uses extracted line features from a 2D scanning laser

ranger on a B21 robot and models the environment as a collection of 2D line seg-

ments. A second implementation utilizes line and point features measured by monau-

ral ultra-sonic rangers. The third implementation again utilizes the laser ranger, but

processes the raw laser data directly, using the technique of scan matching to relate

data gathered from different positions without explicitly extracting any features from

scans. A final implementation employs omni-directional video to model the environ-

ment with vanishing directions, 3D lines, and 3D points. This implementation uses

a 3D world model and batch optimization on each local map rather than a recursive

navigation strategy.

These implementations have been tested in a variety of environments which can be

categorized into three groups based on the type of robot and sensors employed. The

first group (Sections 3.5, 4.6, 5.5) uses combinations of the laser and sonar sensors

from a B21 robot traveling through the corridors of MIT’s main campus. The second

group (Section 6.7) also used the B21 robot, but mounted with an omnidirectional

video camera. These data sets were also taken in and around MIT’s campus, including

the CSAIL Reading Room, the Building 200 Second Floor Lounge, the Atrium in

the same building, and also along similar routes as Group One about the “Infinite

Corridor”. Additionally, data sets from third party sources taken in Victoria Park,

Sydney [41] and coal mines in Pennsylvania [55], (Section 5.5) were processed using

the Scan-Match implementation.

Perhaps the most significant contribution of the Atlas framework is its address-
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ing of the Challenges described in Section 1.2. The issue of model variety is tackled

through the modular framework where the details of the local SLAM module and

Map-Matching module are abstracted from the general framework. Since the naviga-

tion module need only work with a limited sub-map of the environment, it can employ

non-scalable SLAM algorithms that fully address and model the coupled uncertainty

among mapped features and the current pose. Similarly the sub-map approach can

map large scale environments efficiently, since only a few submaps need to be ac-

tive at any particular time. The Atlas framework allows constant time processing

complexity under the condition that the open-loop uncertainty of the robot does not

diverge. Atlas’s Map-Matching module is employed to recognize loop closure events

in large scale environments even when there are significant open loop errors. The

Atlas framework also validates detected loops before they are closed to address the

errors inherent in ambiguous environments.

1.6 Road Map

Chapter 2 will cover the details of the general Atlas framework whereas Chapters 3–

6 cover details of specific implementations. The implementation using line features

extracted from a 2D laser scanner is described in Chapter 3. Chapter 4 covers the

implementation using range measurements from sonar. Chapter 5 revisits the laser

sensor, but processes the scans without extracting features by matching scans, and

Chapter 6 presents the implementation for processing omnidirectional video. Chap-

ter 7, the conclusion, compares the implementations, discusses failure modes, and

presents future work.
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Chapter 2

Atlas Framework

2.1 Introduction

The Atlas framework achieves SLAM through a modular approach. By providing

flexible access to a variety of small-scale solutions, Atlas successfully accomplishes

real-time, large-scale SLAM.

2.1.1 Basic Principles

The design of the Atlas framework rests on four basic principles: the elimination of

a dependence on a global coordinate frame; the elimination of loop constraints; the

elimination of predefined map extents, and the elimination of a dependence upon a

single lowlevel mapping sensor and navigation strategy.

The Atlas framework maintains no single, global coordinate frame, but rather,

an interconnected set of local coordinate frames. Each frame contains a local map

of limited extent, called a map-frame. Two coordinate frames are considered to

be connected (adjacent) if their map-frames possess shared mapped structure. This

adjacency is represented by a approximate coordinate transformation (ACT) between

frames.
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Local maps handle short sensor excursions; however, in an extended mapping task

previously mapped regions will be revisited and loops need to be closed. After recog-

nizing the closure of an extended loop, the composition of adjacency transformations

is not constrained to be the identity transformation. This strategy is essential to

achieving constant time performance in the Atlas framework since no global updates

are required. (Nevertheless, the identity constraint can be applied off-line to refine

the global arrangement of the multiple coordinate frames.)

The spatial extent of the map-frames is not predefined, but rather, determined by

an intrinsic performance metric on the map-frame’s associated map. Since the map

complexity is bounded and the mapped features are in proximity to one another, the

robot will exhibit a high performance metric when near the poses from which the

features were mapped. The performance metric naturally drops when the robot is

constrained from adding new features and leaves the proximity of mapped features, at

which time the Atlas framework will invoke either a transition to an adjacent frame

or the genesis of a new one.

The Atlas framework does not depend on a particular local navigation and map-

ping strategy. Instead, local navigation and mapping are abstracted into a module

that need only provide an estimate of the robot’s current pose (along with its uncer-

tainty) and a metric describing how well the current map explains the current sensor

measurements. Likewise, the data association engine used to match maps is also

modularized. By incorporating different sensor platforms and map representations,

the modular design allows Atlas to scale a variety of SLAM implementations.

2.1.2 Loop Closing and Uncertainty

Loop closing is one of the most difficult issues in SLAM research. Two different

types of errors can occur in loop closing: false positive matches and missed detected

matches. The former refers to situations in which the robot, based upon a false
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match, erroneously asserts that a loop is closed. The latter case occurs when a loop

closure is missed due to failure to successfully match the current map with a previously

mapped area. Atlas adopts a conservative loop closing and verification strategy which

attempts to avoid false positive matches at the expense of increased loop closing

latency and missing some genuine loop closure events. It is possible, however, to

present an adversely designed environment with highly repetitive structure and a

path in which the accumulated uncertainty is so large that the Atlas technique, as

well as any known SLAM loop closing algorithm, will fail.

Given a particular environment, the difficulty of loop closure is dependent on the

growth of uncertainty in the local SLAM method and on the richness of the local map

representation. A smaller growth of uncertainty allows for longer paths to be followed

before confusing two nearby ambiguous regions, and richer maps are less likely to be

ambiguous. Additionally, an environment with less repetitive global structure will

present fewer challenges to loop closing, since there will be fewer ambiguous regions.

Uncertainty presents another challenge to SLAM. Local uncertainty results from

noise introduced into individual measurements. Global uncertainty arises from the

need to discern whether the region currently being observed by the robot consists of

newly explored or previously visited territory. Both local and global uncertainty are

exacerbated by repeated low-level features (e.g. periodic arrays of doors or windows)

or high-level structure (e.g. nearby corridors that are nearly indistinguishable).

Uncertainty is a challenge to SLAM, because it is antagonistic both to achieving

correctness and efficiency. When the mapping algorithm mistakes one local feature

for another, or one region for another, it performs an incorrect data association and

produces an incorrect map. On the other hand, if the algorithm expends excessive

effort in an attempt to avoid such misassociations, it sacrifices efficiency. For algo-

rithm designers, then, a key challenge is to construct a correct map with reasonably

high probability, while bounding the amount of computation expended.
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Map Z

Map B Map CMap A

open loop uncertainty

Figure 2-1: The open loop uncertainty of Map Z with respect to the Maps A, B, and
C is large. Due to the scale of the symmetry in environment there are two ambiguous
matches for Map Z.

No mapping system, including human cartography, can guarantee a perfect map.

However, provided that the robot pose error accrued by the navigation subsystem

along any loop (cyclic path) encompasses at most one region similar to the current

sub-map, our algorithm will efficiently produce a correct map. In other words, the

use of submaps allows Atlas to handle ambiguity at small scales (feature sizes). For

Atlas to handle ambiguity at large scales, the environment must satisfy the condition

that the ambiguity scale must be larger than the error ellipsoid accrued by the robot

around any loop traversed prior to encountering the ambiguous region. (See Figure 2-

1.)

To ensure that the system can correctly closes loops, the distance between possible

matches must be less than the open loop uncertainty of the robot. The loop verifi-

cation procedure has the effect of increasing the distances between possible matches

by considering only those matches whose transformations are consistent with other

maps in a local cycle of the graph.

After recognizing the closure of an extended loop, the Atlas framework does not

constrain the composition of adjacency transformations to be the identity transfor-
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mation. This policy precludes the need for global updates during the robot’s motion

and is essential to achieving efficient, real-time performance. The identity constraint

can be applied off-line, however, to refine the global arrangement of the multiple

coordinate frames. (See Section 2.4.)

2.2 Atlas Components

The core components of the Atlas framework include uncertainty projection, genesis,

map-matching, cycle verification, and traversal with competing hypotheses. Uncer-

tainty Projection (Section 2.2.1) is used to relate the coordinate systems and uncer-

tainties of map-frames that are not directly connected in the Atlas graph. Genesis

(Section 2.2.2) is the process of creating new map-frames and adding nodes to the

Atlas graph. Map-matching (Section 2.2.3) adds new edges to the graph by matching

common structure between previously unconnected map-frames. The Cycle Verifica-

tion procedure (Section 2.2.4) validates the potential loops created by map-matching.

The Traversal process, employing competing hypotheses (Section 2.2.5), governs the

decisions for which map-frame to transition to and whether to initiate the genesis

process.

2.2.1 Uncertainty Projection

Atlas edges contain the information necessary to relate two map-frames. The un-

certainty of a transformation edge is used to project a stochastic entity, such as the

robot position, from one map-frame into another. However, if the map-frames are

not adjacent, these transformations and their uncertainties must be composed along

a path of edges that link the Atlas nodes. Due to cycles in the graph, there may be

more than one path from one node to another. Since these cycles are not constrained

online, distinct paths will not, in general, produce the same composite transforma-
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Figure 2-2: The Dijkstra Projection using two different source nodes. (a) depicts the
topological arrangement of the Atlas graph. (b) uses map-frame A as the source of the
projection. (c) uses map-frame D as the source. The ellipses on the coordinate frames
represent the accumulated projection error. The shortest path from map-frame A to
D is clearly via map-frame B.

tion. In Figure 2-2(a), frame D is reachable from A via B or C, resulting in the two

possible projections of frame D relative to A, shown in Figure 2-2(b).

To overcome this ambiguity the Atlas framework chooses at any instant a single

path. The path should be “short”, in terms of error, to minimize the accumulated

error when composing multiple uncertain transformations. There are various possible

definitions for what makes a path “short”. The particular choice for a shortness metric

is not critical; rather, it is only necessary to have a reasonable metric to facilitate the

determination of unique paths in the Atlas graph.

Two algorithms have been implemented for determining short paths: breadth-

first search (BFS) and Dijkstra’s shortest path [16]. The two algorithms are very

simple, differing only in choice of distance metric and running time. Both algorithms

compute shortest paths from a single source node (usually the current map-frame) to

all other nodes in the graph; however, BFS uses the count of nodes on the path and

Dijkstra’s algorithm uses a non-negative edge weight to compute the length of each

path. BFS runs in O(N +E) time on a graph of N nodes and E edges. It is assumed

that E = O(N), since the nodes are spatially localized and edges exist only between
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nearby nodes; thus the simplified expression for the running time is O(N). Dijkstra’s

shortest path algorithm adopts a more sophisticated distance metric, but at a cost

of a slightly higher running time. The metric is a statistical distance ρ based on the

uncertainty of the transformation in Atlas edges, defined as the determinant of the

covariance matrix of the composite transformation:

T c
a = T b

a ⊕ T c
b

Σac = J1

(

T b
a , T c

b

)

ΣabJ1

(

T b
a , T c

b

)T
+

J2

(

T b
a , T c

b

)

ΣbcJ2

(

T b
a , T c

b

)T

ρ = det (Σac)

where T b
a is a coordinate transform from frame-b to frame-a, J1

(

T b
a , T c

b

)

is the Jacobian

of the coordinate frame composition T b
a ⊕ T c

b with respect to T b
a , and Σac is the

covariance matrix for the uncertainty in the transformation T c
a .

The determinant of the covariance is a measure of the volume of the n-sigma hyper-

ellipsoid of probability mass for a Gaussian distribution [22]. It is a good metric to

use since it is also invariant to deterministic coordinate transformations. For example,

if the uncertain transformation T̂ c
a has the covariance Σac and is composed with the

deterministic transformation T a
w, then the determinant of the resulting covariance Σwc

equals the determinant of Σac. This results from the Jacobian J2 of the transformation

having a determinant of one.

T c
w = T a

w ⊕ T c
a

Σwc = J2 (T a
w, T c

a ) ΣacJ2 (T a
w, T c

a)T

det (Σwc) = det (Σac)

The Dijkstra projection of an Atlas graph is defined with respect to a given source
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Figure 2-3: The Dijkstra projection from a given node in a graph transforms the
graph into a tree with the source node as a root. Here node 4 is taken as a source.
Solid lines correspond to links that are used in the tree representation. Note how in
this example the uncertainty between link 4 and 7 is larger than that accrued via
traversing links 4-6 and then 6-7. Hence there is no direct link between 4 and 7 in
the tree.

vertex as the global arrangement of frames using compositions along Dijkstra shortest

paths. This projection transforms the Atlas graph into a tree of transformations with

the source map-frame as the root. The proximity of any map-frame to the source

frame is measured as ρ computed from the compositions of transformations up the

tree to the root.

The Dijkstra projection requires, in the worst case, O(N log N) time to complete;

however, it need only be recomputed when the current map of the Atlas framework

changes. (See Section 2.2.5.) The projection may also be lazily computed since the

results are not necessary to process current sensor measurements. The map projection

is used primarily to determine candidates for map-matching. (See Section 2.2.3.)

2.2.2 Genesis

The complexity of each map produced within a map-frame is bounded. The Genesis

process creates new local map-frames when entering unexplored regions for which no

existing map-frame can explain the sensor measurements. The genesis process adds a

new vertex and edge to the Atlas graph. Formally, the generation of a new map-frame
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Mj and robot pose xj via genesis is a function of an old map-frame Mi and robot

pose xi:

(Mj,xj) = g(Mi,xi). (2.1)

The process of genesis encapsulated by the function g is broken down as follows:

1. The current robot pose defines the origin of a new frame. Thus, the transfor-

mation from the old to the new frame is simply the robot’s pose, expressed in

the old frame, at the time the new frame is created.

2. The uncertainty of the transformation is set to the uncertainty of robot pose in

the old frame.

3. The robot pose in the new frame is initialized to be coincident with the origin

of the new frame.

4. By definition, the uncertainty of the robot pose in the new frame is zero. All

of the uncertainty of the robot pose at the time of genesis is captured by the

uncertain transformation.

2.2.3 Map-Matching

Genesis creates new maps to explain unexplored areas. In cyclic environments the

robot will eventually revisit an area that it has already explored. Such loop closure

events are automatically discovered and are used to update the connectivity, i.e. add

an edge between two existing vertices in the Atlas graph. There are four steps to loop

closing: candidate selection, map matching, match verification, and graph updating.

First, the robot must determine which of its previously explored maps are possi-

ble candidates for closing a loop. The number of candidate maps will be, at most,

proportional to the integrated uncertainty around the loop. Candidate maps are de-

termined using map projections as described in Section 2.2.1. While computing the
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map projections from the current map-frame, the list of potential map-frames that

may possibly overlap the current frame is computed.

Secondly, the map-frames in the potential candidate list are checked to match

the current frame. This is achieved with a map-matching module that compares the

structure of two maps and returns the probability that the two maps match, as well

as the coordinate transformation that best aligns them. (See Section 2.3.2.)

When the map-matching module succeeds in finding a match, the consistency of

the alignment must be verified. The verification procedure will be discussed in more

detail in the next section. When a match is verified, the Atlas graph is updated by

simply adding an edge to the graph. The edge contains the alignment transformation

and uncertainty returned from the map-matching module. It is important to note

that the focus of the Atlas framework does not immediately shift to the matched

map. The new edge in the Atlas graph simply creates the potential for a traversal as

described in Section 2.2.5.

2.2.4 Cycle Verification

False matches due to ambiguous structure in the environment present one of the

most significant obstacles to correctly closing large loops. When the environment

contains repetitive structure, map-match results are not unique. Furthermore, the

prior uncertainty of the mapping robot before closing the loop may be too large to

disambiguate the correct match. (See Figure 2-4.) Even when there is only one match

visible, it is possible that the correct match simply has not yet been identified; thus,

the single match is uncertain.

There are several approaches to deciding when to accept a map-match. For ex-

ample, one can employ multiple hypotheses to track each possible decision branch

as in Austin and Jensfelt [2]. Alternatively, one can use a method that represents

multi-modal probability distributions, such as Monte-Carlo localization [15, 54] or
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sum of Gaussians models [19]. Another strategy is to temporarily take the maximum

likelihood decision, and then detect and fix errors later by rolling back the computa-

tion. This technique is used in Thrun et al. [55], where falsely matched links can be

corrected recursively when large errors are detected.

Each strategy has its advantages and disadvantages. Methods that perform mul-

tiple hypothesis tracking or that employ multi-modal probability distributions are

exponentially complex, and aggressive methods for reducing the number of active

hypotheses (or modes) are required. Rollback methods may be unable to accurately

detect the errors, and there is no definite bound on how far to rollback the computa-

tion to fix the errors. (The computation is at least proportional to the time to detect

an error, and may be proportional to the size of the whole map.) Also, most data

structures are not suited to efficient rollback, for example the mean and covariance

of a standard Kalman filter.

The approach adopted in this thesis is to defer the decision to accept a map-match

until enough information is available for verification. One potential disadvantage to

deferring decisions is that enough information for a validation may never be obtained.

In some situations, the mapping algorithm will fail to close loops. This occurs, for

example, if an existing path is transversed with little overlap in sensor measurements

from different passes.

The essence of map-match verification is to defer the validation of map-match

edges in the Atlas graph until a “small” cycle is formed that is geometrically con-

sistent. When closing a large loop, the prior uncertainty for the matches may be so

large that multiple ambiguous matches are possible. (See Figure 2-4.) By waiting for

at least one more distinct map-match, the consistency of cycles formed with the first

map-match can be verified. These cycles are much smaller than the large loop’s cycle,

and thus the error can be bounded around the cycle. If a cycle’s prior uncertainty

is smaller than the expected distance between ambiguous matches and the transfor-
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Figure 2-4: On the left is the state of the Atlas graph before closing the large loop
ABCDE · · ·WXY . There are two potential map-matches, Y B and Y A; however, the
prior uncertainty of the open loop transformations is too large to disambiguate the
map-matches. On the right is the state of the Atlas graph after mapping node Z and
making the match ZC. A small cycle CBYZC is now present with an uncertainty
less than the distance between the ambiguities, and both edges ZC and Y B are
validated. The transformations about cycle YBAY are inconsistent – they agree to
a transformation very different from the identity transform; hence edge YA is not
validated.
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mations around the cycle are consistent, confidence in correct map correspondence

is justified. All non-validated map-match edges involved in the verification cycle are

then validated and their effects are propagated in subsequent map projections.

Short cycles containing the current Atlas node are quickly discovered in expected

constant-time by employing a truncated breadth-first search. A cycle is found when

the breadth-first search leads to a node that has been previously visited. The sequence

of nodes that make up the cycle is determined by the two distinct paths up the

breadth-first search tree from the previously visited node. The breadth-first search is

truncated after a maximum depth to ensure constant-time complexity.

The cycle verification step effectively increases the map coverage used to form the

match. False positives are then only a problem when the scale of any environment

ambiguities is larger than the coverage size of the maps in the verification cycle. Thus

the likelihood of false matches is greatly reduced for a small extra computational cost.

2.2.5 Traversal with Competing Hypotheses

Since each map-frame covers only a localized portion of the environment, the mapping

robot will not be able to match sensor measurements with a map-frame once it leaves

the volume covered by the map-frame. The robot will either need to use an adjacent

map-frame to explain its observations, or it will have to generate a new map if it

cannot find a valid map-frame. To determine if adjacent map-frames can better

explain the current sensor measurements, the framework spawns a hypothesis using

the transformation in the Atlas edge to instantiate the robot in an adjacent map-

frame. The hypothesis then processes subsequent sensor measurements to ensure

that its map-frame is valid.

Thus, at any given time, there are several competing map-frame hypotheses that

attempt to explain the current robot pose and sensor observations. The map-frames

that best explain the current sensor measurements will have hypotheses that can
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match most of the measurements to the map structure. On the other hand, invalid

hypotheses will fail to match sensor measurements to existing structure and will con-

sequently be pruned. The Atlas framework assesses the validity of each map-frame’s

hypothesis by monitoring a performance metric q every time step. The performance

metric simply reflects the likelihood that the current sensor measurements Z explain

the mapMi and current robot pose xi.

qi = P (Mi,xi | Z)

The Atlas framework maintains a set of several hypotheses that continuously de-

termine the best map-frames to activate. Each map-frame can support only one

hypothesis at a time, and the maximum number of total hypotheses Hm is fixed so

that overall computational requirements remain bounded. If the number of poten-

tial hypotheses is greater than Hm, then they are instantiated only when existing

hypotheses are terminated. In the implementations, Hm is set to 5, and this limit is

only reached in highly interconnected regions of the Atlas graph. The value of the

limit has not been shown to have a significant effect on the performance since invalid

hypotheses are quickly pruned.

Four types of map-frame hypotheses manage the traversal of focus about the

Atlas graph by making transitions between adjacent map-frames. These hypotheses

are labeled as juvenile, mature, dominant and retired. (See Figure 2-5 for a state

transition diagram.) Retired hypotheses involve no computation and are simply used

to mark inactive maps. The three other types of hypotheses, however, process sensor

measurements and are evaluated with the same performance metric.

Mature hypotheses can extend their maps provided they have not reached their

map capacity. Additionally, mature hypotheses spawn juvenile hypotheses in their
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Table 2.1: Atlas hypothesis types

Juvenile Initial hypotheses instantiated from neighboring map-
frames. Used to test for feasible traversals.

Mature Main hypotheses that are allowed to extend their maps
with new features.

Dominant The hypothesis with the best performance metric. This
hypothesis is the focus of the framework since it serves as the
root of map projections and is also used for all map-matches.

Retired Hypotheses that are not actively processing sensor mea-
surements. Mature hypotheses that fail to perform are retired.

adjacent map-frames to test the feasibility of transitioning to a neighboring map. The

feasibility is based on how well the juvenile maps explain their sensor measurements

without allowing the juvenile hypotheses to extend their maps.

A juvenile hypothesis can “mature” when after a short probationary period its

performance metric q becomes greater than all mature hypotheses. If at the end of

this probationary period a juvenile hypothesis’s quality does not warrant promotion it

is simply deleted. The probationary period must be long enough to give the juvenile

a chance to perform. The period should not be so long, however, such that compu-

tational resources are wasted on doomed hypotheses and the chance to instantiate

better hypotheses is missed. Typically, a probationary period of 5−10 measurement

steps is adequate.

The mature hypothesis with the best performance metric is considered the domi-

nant hypothesis. The dominant hypothesis is used for publishing current robot pose

and local features to clients of the Atlas framework. In other words, it is the output of

the framework. Mature hypotheses that fail to perform well are saved and “retired”.

A retired hypothesis may be reactivated at a later time as a juvenile.

If there is only one mature but failing hypothesis, then it is necessary to create a

new hypothesis to explain current sensor data. Genesis (Section 2.2.2), the process
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Figure 2-5: Atlas hypothesis state transition diagram. The dominant hypothesis is
used to provide an instantaneous output from the algorithm. It is simply the most
successful of all the mature hypotheses. Mature hypotheses are able to extend maps
and spawn juvenile hypotheses in adjacent map-frames. When a mature hypothesis
fails to describe the robot’s environment adequately (the robot has moved away, for
example), it is retired. The hypothesis can be reinstated as a juvenile at some time
in the future by an adjacent mature hypothesis. Juveniles are not allowed to modify
their maps. If, after a probationary period, a juvenile’s map is failing to explain
sensor data, then it is deleted. However, a successful juvenile is promoted to mature
status.

by which new map-frames are created, instantiates a new mature hypothesis. New

map-frames are needed when none of the existing hypotheses can adequately explain

the sensor measurements, such as when the robot moves into an unexplored region.

The new hypothesis is mature and not juvenile since it needs to immediately begin

mapping new structure; juvenile hypotheses are used solely to evaluate a transitions

to existing map-frames.

2.3 Atlas Modules

Two types of modules abstract the details for each particular implementation of the

Atlas framework. These are the local SLAM modules, which process the sensor

measurements, and the map-matching modules, which determine alignments between

overlapping maps. This thesis describes several implementations using different

sensors and map representations, including laser scans, sonar rangers, and omni-
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Figure 2-6: The spatial and topological evolution of an Atlas graph. This set of
diagrams highlights key aspects of the Atlas framework. The environment depicted
is fictional and the robot path is construed to be illustrative. The right hand column
of this diagram uses shading to indicate map-frames that successfully represent the
local region. Note that the maps do, in fact, overlap despite what shading suggests.
This intersection is denoted by labeled brackets on the spatial diagrams. Note also
that the extent of a map-frame is not defined or bounded by the area covered but by
the performance metric.
A Genesis: Atlas has built two maps (1,2). Map 1 no longer explains the surround-
ings and is inactive. Map 2 is at capacity so genesis of Map 3 occurs. An edge is
built between Maps 2 and 3. Map 3 immediately becomes the dominant hypothesis.
B Map-Matching: Mature hypotheses are present in both Maps 3 and 4. The
Dijkstra projection suggests that Map 4 may be “close” to Map 2. The map-matching
algorithm confirms this conjecture and a new link is created between Maps 4 and 2.
This is loop closure. Map 2 is now adjacent to a mature Map 4, and so shortly after
the edge creation a juvenile hypothesis is attached to Map 2.
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Figure 2-7: Continuation of Figure 2-6
C Hypothesis Cull: The robot has recently traversed into Map 2 (from Map 4)
which has also become dominant. Juvenile hypotheses have been installed in the
adjacent Map 1 and 3. A short time later the juvenile hypothesis in Map 3 has been
terminated, since it cannot adequately explain the central corridor. The previously
mature hypothesis in Map 4 has also been culled for the same reason. The juvenile
hypothesis in Map 1, however, has been promoted to mature status. At this point
the estimate of the transformation between Maps 1 and 4 can be updated using an
observation constructed from the fact that the vehicle is simultaneously in Maps 1
and 4.
D Loop closure: Initially only one mature hypothesis exists (in Map 1). Unlike
in case A genesis is not imminent (due to low vehicle uncertainty and the fact that
Map 1 is not full). Instead the map-matching algorithm conjectures that Maps 1 and
4 may be adjacent. The map-matching algorithm confirms this and another new link
is created. This completes the topological and spatial description of the environment.
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directional video, which will be described in Chapters 3, 4, 5, and 6.

2.3.1 Local SLAM

Atlas abstractes its local mapping and navigation processing so that many different

SLAM methods may be incorporated under a single framework. The framework needs

to know only the module’s estimate of the current robot pose with its uncertainty,

and the value of the map’s performance metric for processing the current sensor

measurements. The framework does not need to know anything about the sensor

measurements or the actual map representation employed; rather, it is only concerned

with coordinate frames and performance metrics.

The local SLAM module must limit the complexity of its map representation such

that the sensor processing time can be bounded. Local map complexity (if feature-

based) is typically bounded by limiting the number of elements which are inserted

into the map. After the map’s capacity has been reached, the map can still be used

to process further sensor measurements; it is only restricted from growing further.

2.3.2 Map-Matching

Atlas’s map-matching module finds correspondences between two maps and returns

the coordinate transform that best aligns them. The module’s design depends pri-

marily on the type of map representation from the local SLAM module; however,

most implementations follow a general form.

The map-matching process can be described as a search for a coordinate trans-

formation that aligns two overlapping map-frames and a quantitative way to assess

the resulting alignment. The uncertainty from the prior estimate for the map-frame

alignment transformation (as computed by the map projection), may be very large

– too large, in fact, to be able to rely on the simple strategy of nearest-neighbor

feature gating for data association. Thus, the map-matching module needs to pursue
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a method that is robust to large initial errors in the transformation.

In general terms, map-matching comprises two steps:

1. Determining the probability mij that the two maps Mi and Mj match by

identifying common structure.

mij = P (Mi ∩Mj)

2. Producing the alignment transformation T j
i and its uncertainty Σij between

mapsMi andMj .

{

T j
i , Σij

}

= P
(

T j
i | Mi ∩Mj

)

The exact form of Mi ∩Mj used for determining common structure is not dic-

tated by the Atlas framework, but is left as a function to be defined in a particular

implementation. For the feature-based SLAM results in this thesis, the operation

Mi ∩ Mj is defined as the search for correspondence between features in Mi and

Mj, and P (Mi ∩Mj) =
‖Mi∩Mj‖

min(‖Mi‖,‖Mj‖)
. If a small number of features match for two

maps, then the probability of a successful match is low.

Repetitive structure in the environment may cause false positive matches to be

discovered in map-matching. The degree of repetition can be partially assessed by

map-matching a map with itself. Only map structure elements that match uniquely

within a map should be used to evaluate a match to another map.

2.4 Global Map Frame Optimization

We are often motivated to provide a single global map of the robot’s environment. For

example, in Section 3.5 we compare an estimated map with an architectural drawing.

This “globalized” representation is a result of a post-processing procedure to find a
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global projection of each map-frame. In other words, we wish to find the position and

orientation of each map-frame with respect to a single frame. We choose to reference

all maps to the first map-frame created (frame 0).

The Dijkstra projection does this when using map-frame 0 as the source; however

it uses only a minimal subset of the edges in the graph. We wish to find an optimal

projection that incorporates all the edges.

When there are loops in the graph, there will be a disparity νi,j between the

transformation T j
i stored in the Atlas graph edge and the transformation derived

from the global poses of each frame (T i
0 and T j

0 respectively).

νij = T j
i ⊕ T 0

j ⊕ T i
0 (2.2)

We seek to find the global arrangement T ∗ of all N frames T = {T 1
0 · · · T

N
0 } that

minimizes this error over all edges. This can be posed as a non-linear least squares

optimization problem:

T ∗ = arg min
T

∑

ij

‖νij‖
2 (2.3)

We use the Dijkstra projection to compute the initial global arrangement, and the op-

timization typically converges in less than 5 iterations using the Matlab optimization

toolbox.

2.5 Summary and Running Time Analysis

Figure 2-8 summarizes the processing performed during each cycle of the algorithm.

Step 1, local map iteration, runs in constant-time, because the complexity of each local

map and the number of non-retired hypotheses are bounded. Step 2, the management

of hypothesis state transitions, is bounded, because it is assumed that each local map

is connected to a bounded number of other local maps (bounded degree assumption).
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Atlas Algorithm:

1. Local SLAM Iteration: execution of one iteration of the local SLAM
module (e.g., feature-based or scan-match) in each non-retired map-
frame using the new sensor measurements.

2. Hypothesis State Transitions: creation, promotion, and demotion
of hypotheses.

3. Map Projection Iteration: if the dominant map changes in Step 2,
restart the shortest path computation; otherwise, iterate one step of
the shortest path computation and update the map-match candidate
list.

4. Map-Matching: execute map-matching between the current domi-
nant map and the next map-match candidate; perform cycle verifica-
tion if potential match found; add valid edge.

Figure 2-8: Summary of the computation performed for each iteration of the Atlas

algorithm.

The computational cost to run map projection to completion is O(n log n) when using

Dijkstra’s shortest path algorithm and O(n) when using breadth-first search (where

n is the number of map-frames). In Step 3, this computation is amortized over time,

expending O(1) time per iteration. Furthermore, since completing the projection is

not critical, there is no increase in computational complexity. New potential maps

are added to the candidate list as the map projection is processed. Finally in Step 4,

map-matching occurs in constant-time, because the size of the maps and the number

of maps being matched are bounded.

Together the modularity and performance properties of the Atlas framework allow

a variety of SLAM implementations to run efficaciously in large-scale environments.

The following four chapters will present in detail different implementations within the

Atlas framework.
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Chapter 3

Atlas with 2D Laser Lines

3.1 Introduction

Many indoor environments are composed of large, flat surfaces such as walls and

doors. These features typically appear as straight lines in laser scans, and these lines

represent the prominent features a localizing robot must extract when building a map

of an indoor environment. Typically, the line features are estimated from multiple

range measurements which reduces the effects of sensor noise, leading to more precise

navigation. The appearance of straight lines in laser scanning provides an additional

robustness to non-stationary objects in the scene. These features, which should not

be mapped, tend not to appear as straight lines and can thus be excluded from the

representation of the environment.

The use of the Atlas framework for localization and mapping is demonstrated with

a simple robot in a standard, indoor environment consisting of long, cyclic corridors

with doors and walls. The implementation involved the creation of a feature-based

map derived from line segments in laser scans of this environment. To accomplish

this task, a SICK PLS scanner is mounted horizontally on a B21 robot. This laser

scanner uses a spinning mirror to make 180 range measurements in a 180◦ field of
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Figure 3-1: Typical Laser Scan with estimated lines and covariances

view with roughly a 10-centimeter range accuracy. (See Figure 3-1 for a typical laser

scan.) The B21 robot is a cylindrical robot about 3.5 feet high with a diameter of 21

inches. It is primarily used as a testbed in indoor environments because its wheels

cannot handle rough terrain.

Despite the advantages of scanned lines, certain challenges and problems emerge

when relying solely upon scanned lines when attempting SLAM. Not every indoor

environment has enough planar features from which to fully localize the robot; which

typically occurs in long corridors where only the two parallel lines from each side

are observed, and the robot cannot measure its location with respect to the long

dimension of the corridor. Other sensors, such as sonar, can help in these situations

because sonar can observe point features from imperfections in the wall. These addi-

tional observations would allow the robot to measure the motion along the corridor.

(See Chapter 4.)
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3.2 Line Feature Estimation

Line segments in 2D have four degrees of freedom (DOF). Two DOFs parameterize

the infinite extent line, and the remaining two parameterize the end points of the

segment on the line. It is difficult to estimate the exact position of the endpoints

of lines in laser scans because the end points are often occluded and have minimal

support from range measurements. Therefore, the endpoints are unreliable to use

for localization. The geometric line on which the segment lies, however, is a good

feature to localize from. Re-observations of a line can measure the translation error

in the direction perpendicular to the line as well as the heading error of the robot.

Consequently, when there is a set of multiple non-parallel lines, the robot can be

accurately localized.

The line features in this Atlas SLAM module implementation are parameterized

in polar form by ρ and φ. The perpendicular distance of the line from the coordinate

origin is ρ, whereas the angle of the normal to the line is φ. A point (x, y) is on the

line L(ρ, φ) if the residual function hline(ρ, φ, x, y) equals zero.

hline(ρ, φ, x, y) = x cos(φ) + y sin(φ)− ρ (3.1)

The endpoints are parameterized as the signed distances of the endpoints from the

point on the line that is closest to the origin. (See Figure 3-2.)

A line L(ρ, φ) can be fitted to a list of points {xi, yi}, by minimizing the squared

distance of each point from the line. It is important to note that the residual function

hline in equation 3.1 computes the distance of the point from the line.

L(ρ, φ) = arg min
ρ,φ

∑

i

hline(ρ, φ, xi, yi)
2 (3.2)

Since the residual function is non-linear in the line parameters, a least squares solution
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M

ρ
φ

s

e

Figure 3-2: The line is parameterized by ρ and φ, which describe the perpendicular
distance of the line from the origin and the angle of the normal. The endpoints (s, e)
are parameterized by their signed distance from the line’s closest approach to the
origin.

cannot be used. There is, however, a closed-form solution for the above minimization.

This solution is found by finding the centroid of the points and the angle of the axis

of minimum inertia. Hence, the first and second moments of the points are initially

computed.

xc =
1

N

∑

i

xi

yc =
1

N

∑

i

yi

sxx =
∑

i

(xi − xc)
2

sxy =
∑

i

(xi − xc)(yi − yc)

syy =
∑

i

(yi − yc)
2
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Then the line parameters are determined as:

φ =
1

2
arctan

(

2sxy

sxx − syy

)

−
π

2

ρ = xc cos(φ) + yc sin(φ)

The π
2

term transforms the angle of the axis of minimum inertia into the angle of the

line normal.

The covariance of the line parameters can be estimated from the Jacobian H of

the residual equation 3.1.

Hi =
∂hline(xi, yi, ρ, φ)

∂ρ, φ

=

[

−1 yi cos(φ)− xi sin(φ)

]

Assuming that the line residual of each point is independently identically distributed

Gaussian noise with a covariance of σ, then the covariance Σρφ of the line parameters

can be computed.

Σρφ = σ

(

∑

i

HT
i Hi

)−1

(3.3)

The covariance can be used to draw 1-sigma error bounds on line segments. Unlike

the elliptical covariance contour of a point, the error contour for a line is depicted as

a hyperbola. The hyperbola can be parameterized as a perpendicular deviation to

either side of the line.

d(λ) = ±
√

λ2cφφ − 2λcρφ + cρρ

where λ parameterizes the signed distance along the line from the point closest to the

origin, and cρρ, cρφ, and cφφ are the components of the covariance matrix Σρφ. These
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error bounds are also depicted as hyperbolas about the line segments in Figure 3-1.

3.2.1 Line Splitting and Fitting

Given a single laser scan, a low-level algorithm must segment the range measurements

into line segments and estimate the line parameters and corresponding uncertainties

of each segment. This task is accomplished by recursively fitting and splitting the

range measurements on a contour formed by the scan until the segment adequately

fits a line or is too short.

There are two basic thresholds used in this process. The first is the tolerance for

the maximum distance a point can be from a segmented line, Dmax. This distance

should be about 2 standard deviations of the range measurement noise so that the

measurement noise does not result in over-splitting of line segments. The second is

the minimum number of points required on each line segment, Nmin. When there are

too few points on a line, the fitted line parameters are not robust enough with the

sensor noise on each range measurement, and hence the points are not used.

The split and fit algorithm starts out by treating the sequence of range measure-

ments ri from the corresponding angles θi as a contour C1,N in space with a simple

polar to Cartesian coordinate transform.

(xi, yi) = (ri cos(θi), ri sin(θi))

C1,N = {xi, yi} i ∈ 1 · · ·N

where θi is the scan angle for each range measurement ri.

The line L formed by the endpoints of the contour (x1, y1) and (xN , yN ) and the

distance di of every point on the contour C1,N from the line L is computed. If the

maximum distance dj is less than Dmax, and N is greater then or equal to Nmin, a line

segment is found. The parameters of this line segment are then estimated using all
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Max deviant

Max deviant

Figure 3-3: Three steps of the line splitting process are depicted from top to bottom.
The line between the first and last points in the segment is used to find the max
deviant. The max deviant is the best place to split the set of points if they do not
accurately fit on a line. The line parameters and covariance are estimated from sets
of points with no deviant larger than Dmax.

61



the measurements in the contour by minimizing the squared distance of each point

from the line as in equation 3.2. The covariance of each line segment is also computed

using equation 3.3, as this will be necessary for incorporating measurements into the

SLAM Kalman Filter. (See Section 3.3.)

If the length of the segment is less then Nmin, the segment is discarded. Otherwise,

when the max deviant dj is larger than Dmax, the contour is split into two pieces at

the max deviant. The procedure recurses on the sub-contours C1,j and Cj+1,N until

all the line segments have been found. (See Figure 3-3.)

3.3 Landmark Kalman Filter

The laser line local SLAM module is based upon an Extended Kalman Filter (EKF).

The basics of the EKF in SLAM are described in further detail in [17].

The three main models that compose the SLAM module are the sensor model,

the map representation model, and the robot model. The sensor model is represented

by the line features extracted from the laser scans. Similarly, the map representation

is simply a collection of line segments parameterized relative to the map-frame’s

coordinate origin. Finally, the robot model contains the position and orientation of

the robot relative to the coordinate origin, as well as the dynamics that describe how

the robot moves.

3.3.1 Odometry Model

The B21 robot uses a synchro-drive with four wheels that can turn while holding the

robot in place. The software on the robot internally integrates the odometer encoders

on the wheels and reports the position and angle of the robot relative to where the

robot was at the last reset. The reported pose of the robot is corrupted by integrated

errors due to wheel slippage and skidding, and thus is dependent on the amount of
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turning and the speed of the robot. It is unnecessary to model all the physics of the

4-wheeled system; instead, it is simpler to model the robot’s drive mechanism with a

two-wheeled odometry model.

The two-wheeled odometry model consists of two wheels at a fixed separation on

a single axle. Each wheel has an odometer that measures its turning motion. The

robot’s frame of reference is set midway between the two wheels, with the x-axis

running along the axle towards the right wheel, and the y-axis pointing forward.

The odometers are polled periodically (at about 5 Hz on the B21 robot), and the

differential motion ∆xv = [∆x ∆y ∆θ]T can be computed from the left and right

measurements ∆L and ∆R:













∆x

∆y

∆θ













=













0

sR∆R+sL∆L
2

sR∆R−sL∆L
B













(3.4)

where sR and sL are the right and left wheel scale factors in meters per click, B is

the length of the wheel baseline, and ∆θ is in units of radians.

The current robot pose xv is maintained in the Kalman state vector.

xv =













x

y

θ













At every time step, the current robot pose is propagated by the function xv(i) =

fv (xv(i− 1), ∆xv(i)).

fv (xv(t), ∆xv (t + ∆t)) = xv (t)⊕∆xv(t + ∆t) (3.5)

The propagation function uses the motion ∆xv(i) computed from the odometry mea-
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surements in the body frame of the robot and composes the transformation with the

previous pose of the robot xv (i− 1) to obtain the predicted pose xv(i).

The Extended Kalman filter also requires the Jacobian Jxv
of the propagation

function fv (xv , ∆xv ) with respect to the state xv .

Jxv
=

∂fv

∂xv

= J1 (xv , ∆xv ) (3.6)

Where J1 (a,b) is the Jacobian of a⊕ b with respect to a. This Jacobian is used to

transform the state error covariance at each time step.

The propagation noise source is modeled to arise from uncertainty in the wheel

baseline and the wheel scale factors, with a slip factor perpendicular to the wheels.

This correctly models the fact that there is no error when the robot is stationary, and

that the error increases when moving faster or when turning.
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δξ
(

sR(1+δsR)∆R+sL(1+δsL)∆L
2

)

sR(1+δsR)∆R+sL(1+δsL)∆L
2

sR(1+δsR)∆R−sL(1+δsL)∆L
B+δB













(3.7)

The noise variables δξ, δsR, δsL and δB are modeled as zero mean Gaussian dis-

tributed random variables with standard deviations of σξ, σsR
, σsL

and σB, respec-

tively.

Since the noise model is non-linear, at each time step the odometry model is

linearized. The Kalman Filter process noise Qv is computed by transforming the

independent noise covariance on the slip, scale factors and wheel baseline errors with

the Jacobians (Jodo) of Equation 3.7 with respect to noise variables and the Jacobian
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(Jmotion) of Equation 3.5 with respect to the motion.

Jodo =













∆y 0 0 0

0 sR∆R
2

sL∆L
2

0

0 sR∆R
B

− sL∆L
B

−∆θ
B













Jmotion = J2 (xv , ∆xv)

Qv = JmotionJodo



















σξ

σsR

σsL

σB



















JT
odoJ

T
motion

Where J2 (a,b) is the Jacobian of a⊕ b with respect to b.

The B21 robot does not directly report the right and left wheel encoder measure-

ments ∆R and ∆L. However, they can be easily computed by inverting Equation 3.4.

∆R = (∆y + ∆θ
B

2
)/sR

∆L = (∆y −∆θ
B

2
)/sL

The estimated odometer values are subsequently substituted into the odometry noise

model to compute the process noise matrix Qv.

3.3.2 Advanced Odometry Model

The odometry model in the previous section is not always sufficient to model the

errors. The model in Equation 3.7 does not account for biases that cause the robot to

drift significantly to the left or right for longer periods of time. The robot will often

veer to one side because one wheel gets less traction than the other. A simple way

65



to model this phenomenon is to have a bias variable λ that makes one wheel’s scale

factor larger than the other:

sR → sR(1 + λ) (3.8)

sL → sL(1− λ) (3.9)

The bias factor λ changes slowly as the robot moves over different surfaces and

thus cannot be calibrated ahead of time. Instead the robot state in the Kalman filter

is extended with this bias parameter, and it is estimated online.

The estimated bias factor is employed to correct the reported odometer motion

by plugging Equations 3.8 and 3.9 into the odometry model, Equation 3.4, and sim-

plifying.
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+ λ sR∆R−sL∆L
2
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B













To model the fact the the odometry bias can change slowly over time, the bias

treated as a first-order Markov random variable with a time constant τλ and standard

deviation σλ. The Markov model induces the propagation:

λ(t + δt) = λ(t)e(δt/τλ) + δλ

Where δλ is zero mean Gaussian distributed noise with standard deviation of σλ.

The addition of the odometry scale bias to the Kalman state vector also adds
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elements to the state propagation Jacobian in Equation 3.6.

∂fv

∂λ
=













− sR∆R−sL∆L
2

sin(θ)

sR∆R−sL∆L
2

cos(θ)

sR∆R+sL∆L
B













3.3.3 Measurement Models and Processing Summary

For each new laser scan the local SLAM module makes several computations. First

the laser segmenter processes the current scan to extract the visible line segments as

described in Section 3.2.1. Secondly the Kalman filter is propagated to the current

time step using the odometry models depicted in Section 3.3.1 and 3.3.2. Next the

current view of laser lines is predicted from the Kalman state, and the measured lines

are matched to the mapped lines. The matched lines are used to update the Kalman

filter to simultaneously correct for the growth of localization errors from propagating

the odometry model and reduce the uncertainty of the mapped lines. Any measured

lines which were not matched to the map are tracked as preliminary lines. If any

preliminary lines have been tracked for enough time steps they are initialized as new

features into the map. The final step is to report the performance metric to the Atlas

framework. The performance metric is based on the number of matched lines and the

number of newly visible lines.

Line predicting

After the propagation step of the Kalman filter and after the lines have been extracted

from the laser scan, the current view of mapped lines must be represented with respect

to the current robot pose. Each mapped line xLi
= [ρ φ]T is transformed by the

67



function hL(xv ,xLi
) to the predicted line Lvi

= [ρv φv]
T .

Lvi
= hL(xv ,xLi

) (3.10)

ρv = ρ− x cos(φ)− y sin(φ) (3.11)

φv = φ− θ (3.12)

The Jacobian of the prediction function ∇hL is used to extract the covariance of the

predicted line from the Kalman filter state covariance P.

∇hL =

[

Hv · · · HLi
· · ·

]

=







− cos(φ) − sin(φ) 0 · · · 1 x sin(φ)− y cos(φ) · · ·

0 0 −1 · · · 0 1 · · ·






(3.13)

where Hv is the derivative of the prediction function with respect to the current robot

pose, and HLi
is the derivative with respect to the ith mapped line. Note that all the

other matrix elements of the Jacobian are zero. Thus the predicted line covariance

ΣLvi
is simply formed as follows:

ΣLvi
= ∇hLP∇hT

L (3.14)

Line matching

Line matching is straightforward since the map has been projected into the cur-

rent robot view. Nearest-neighbor gating is used to determine the best matches of

extracted lines to map lines. It is not a problem if more than one extracted line

matches a map line since the mapped lines may be longer. The converse, however,

is not permissible because the information from the measured lines cannot be used

twice. The metric for determining nearness of lines is based on the Mahalanobis
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distance dz of the line parameters:

dz =

[

(ρz − ρv) (φz − φv)

]

(ΣLz
+ ΣLv

)−1







(ρz − ρv)

(φz − φv)







where the subscript z marks the measured line extracted from the current view, and

v marks the predicted line and covariance as in Equations 3.10 and 3.14.

The lines’ endpoints are also checked to make sure that the lines sufficiently over-

lap. The endpoints are parameterized by the signed distance along the line where 0

is the point on the line closest to the origin of the map-frame. The overlap o and the

coverage c between two lines a and b with endpoints (sa, ea) and (sb, eb) are initially

computed as follows:

o = min(ea, eb)−max(sa, sb)

c = max(ea, eb)−min(sa, sb)

where sa < ea and sb < eb. It makes sense to compare the overlap o with the coverage

c of the two lines such that the overlap fraction op can be used instead of a metric

distance.

op =
o

c

The percentage overlap op is simpler to threshold than the plain overlap o since it

does not depend on the units used to represent the endpoint distances.

Both a near threshold σnear and a far threshold σfar are used to judge the Maha-

lanobis distance dz of the matching. The threshold values are based on the chi-squared

distribution with two degrees of freedom. Thus to ensure a valid match with a proba-

bility of 0.999, the threshold σnear is set to 13.8. In this implementation, the threshold
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σfar is set to 36, which corresponds to a statistical distance 6 standard deviations away.

Only measured lines that are marked as “far” from every mapped line are consid-

ered new lines in the view. This is necessary to limit the clutter that would otherwise

be present due to the measurement noise and a tight near threshold. This strategy

also partially prevents multiple lines from being mapped into the Kalman state by

the same physical line.

Usually every mapped line must be compared with every measured line to find

the matches. The simple pseudocode for the algorithm to match the set of measured

lines Lz with mapped lines projected into the current view Lv follows:

Match-Lines-Slow(Lz, Lv)

1 m← {}

2 for i← 1 to length [Lz]

3 do for j ← 1 to length [Lv]

4 do if Match(Lz[i], Lv[j])

5 then m← {m, {i, j}}

6 return m

The process of line matching can be sped up by sorting the lines. The lines are

sorted increasingly by their distance from the origin of the coordinate frame. Since

the lines are sorted, when a unmatched mapped line is further from the origin than

a measured line, no other subsequent mapped line will match the measured one.

Likewise, the loop to match the next measured line can be sped up, because the loop

may start with the first mapped line that was close to the previously measured line.
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Match-Lines-Fast(Lz, Lv)

1 m← {}

2 Sort(Lz)

3 Sort(Lv)

4 j0 ← 1

5 for i← 1 to length [Lz]

6 do for j ← j0 to length [Lv]

7 do if Less-Than(Lz[i], Lv[j])

8 then break

9 if Greater-Than(Lz[i], Lv[j])

10 then j0 ← j

11 if Match(Lz[i], Lv[j])

12 then m← {m, {i, j}}

13 return m

The comparison for determining whether a line is greater or less than another

must take into account the uncertainty of the line. An assumption is made on the

maximum allowed uncertainty of the lines’ ρ parameters. Then only lines whose ρ

difference is greater than the maximum allowed uncertainty ∆ρmax are considered

either greater than or less than the other. Otherwise, the lines are neither greater or

less than with respect to each other.

Less-Than(La, Lb)

1 ∆ρ← (ρa − ρb)

2 if ∆ρ < −∆ρmax

3 then return true

4 else return false
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Greater-Than(La, Lb)

1 ∆ρ← (ρa − ρb)

2 if ∆ρ > ∆ρmax

3 then return true

4 else return false

This procedure decreases the running time complexity of the simple matching

algorithm from O(NM) to that of O(N log N + M log M), where N and M are

the number of mapped lines and measured lines, respectively. The running time

complexity of the inner loop is O(1), since only a constant number of map lines will

be neither greater than or less than a measured line. Thus the matching takes O(M)

time, and consequently the total running time is dominated by the initial sorting of

the lines.

It is important to note that since the capacity of the local map is limited in the

Atlas framework, the number of features to match does not grow without bound.

Hence the matching procedure is considered to take O(1) time, regardless of which

procedure is implemented. Nevertheless, the fast line match procedure improves the

running time constants.

Line updating

The measurement model relates the matched map line with the measured line via the

current robot pose. The parameter residual of the predicted line, via Equation 3.10,

with the measured line is used to update the Kalman state. The prediction Jaco-

bian, Equation 3.13 is used to form the Kalman gain matrix and to update the state

covariance. Each matched line is updated separately since the uncertainties of mea-

surements are independent from one another, which reduces the size of the matrices

used in the update.
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Only the line parameters, and not the endpoints, are used to update the Kalman

filter state and covariance. The endpoints of the lines are not reliable in updating the

robot pose. The endpoints are often formed by occlusions and their errors are poorly

modeled by the Gaussian assumptions of a Kalman filter. However, the measured

endpoints are used to increase the extent of the mapped lines. This is necessary since

line overlap is used during matching.

Line tracking

A set of preliminary lines Lp is kept in the current view to track new lines that were

not matched. The new lines are those measured lines classified as “far” from every

mapped line. The preliminary lines are continually propagated into the current view;

thus the robot’s motion uncertainty must be integrated into the lines’ uncertainty.

The propagation function is identical to Equation 3.10, except that the robot’s motion

∆xv is used in place of the robot’s pose.

The preliminary lines are then matched with the new lines. The same function

to match the predicted map lines as described above is used here. New preliminary

line tracks are started from the leftover lines, if any, that are “far” from all the other

lines.

Line mapping

When a line has been tracked for several time steps, the algorithm is assured that the

line is not a spurious line extracted from a noisy scan. Consequently, a preliminary

line that has been tracked for a minimum number of time steps is mapped as a new

feature, with corresponding Kalman filter state. The mapping process uses a function

g() that maps the measured line Lz via the current robot pose xv to the new feature
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state L.

L = g(xv , Lz)

ρ = ρz + x cos(φz + θ) + y sin(φz + θ)

φ = φz + θ

The Jacobians of the mapping function with respect to the Kalman state ∇gx and

with respect to the measurement∇gz are used to extend the Kalman filter covariance.

∇gx =







cos(φ) sin(φ) −x sin(φ) + y cos(φ) · · ·

0 0 1 · · ·







∇gz =







1 −x sin(φ) + y cos(φ)

0 1







where all elements in ∇gx corresponding to states other than the current robot pose

are zero.

Only the most recent measurement of the line is mapped into the new line state,

since it is not corrupted by the propagation noise of the robot’s motion. New lines

can be mapped into the state only if the map’s capacity has not been reached.

Performance metric

The final step in each SLAM iteration is to report the performance metric. The

performance metric q indicates how well the current local SLAM module is performing

and is used by the Atlas framework to decide which of several map hypotheses to use.

The metric ranges between the values of 0 and 1, which indicate the worst and best

performances, respectively.

There are three parts to the performance metric, which describe the hypothesis’

ability to explain the current sensor measurements (qmeas), its ability to explain the
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current robot pose (qrobot), and how well conditioned the current robot pose is (qcond).

These three metrics all range between 0 and 1, and the composite metric is their

product.

q = qmeas · qrobot · qcond

The first part of the metric, qmeas, is composed by comparing the probability

density of the residuals of the matched features to the maximum possible probability

density of the measurements.

qmeas =

∑

i p(Lzi
− Lvi

;hLi
PhT

Li
+ Ri)

∑

i p(0;Ri)
(3.15)

where p(x; Σ) is the m-dimensional Gaussian probability density function:

p(x; Σ) =
1

(2π)
m
2 det(Σ)

1

2

exp

{

−
1

2
xT Σ−1x

}

The numerator of Equation 3.15 is the sum of the Kalman filter innovation probability

densities P (x, Z), and the denominator is the sum of the measurement model densities

P (Z | x) evaluated at their modes. Measured lines with no matches to feature

states have infinite residuals, thus they contribute zero to the sum in the numerator.

Interestingly, this expression reduces to P (x) which describes the probability density

of the Kalman filter state, as opposed to P (x | Z), which is the entity that the

Kalman filter maintains with the state vector and covariance matrix.

Note that qmeas is not sufficient by itself as the performance metric, since it fails

to describe how certain the Kalman filter is of the current robot pose. For example,

even when lines are mapped for very uncertain robot poses, the predicted lines can

still have a small uncertainty and residual when matching measured lines.

The Kalman filter, however, does maintain a measure of how well the robot is
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localized, which is used to form the second component, qrobot. The trick is expressing

the measure of robot uncertainty in the covariance of the Kalman filter as a probability

between 0 and 1. A measure of the typical performance expected for the robot P∗
xx

is employed to compare with the current uncertainty of the robot Pxx.

qrobot =
p(0;Pxx)

p(0;Pxx) + p(0;P∗
xx)

=
1

1 +
√

det(Pxx)
det(P∗

xx)

(3.16)

Thus when the robot location is very uncertain, the determinant of its covariance

increases and the metric goes to zero. Likewise when the robot location is very

certain, its covariance is small and the metric tend towards one.

The third component of the performance metric, qcond, measures how well the

robot’s position covariance is conditioned. Measuring the condition of the robots

position is necessary since partially observable features are used to update the robot.

When there is only one line to measure, or when all measured lines are parallel,

then the components of the robot’s pose uncertainty in the direction of the lines

will grow without bound. This leads to highly eccentric covariance ellipses, which is

undesirable. The condition number of the covariance is the ratio of the maximum

to the minimum eigenvalue. The lengths of the symmetrical axes of the covariance

ellipse are proportional to the square roots of the eigenvalues. Thus the following

metric:

qcond =
mineig(Pp)

maxeig(Pp)

indicates the eccentricity of the robot’s positional covariance, where Pp is the Kalman

filter covariance corresponding to the positional components of the robot’s pose.

The condition of the robot’s orientation is not necessary, since in this model it is
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1-dimensional and fully observable from a single line. When the covariance of the

position is well-conditioned, the eigenvalues have about the same magnitude and the

metric qcond tends to one. Otherwise, when the covariance becomes highly elliptical,

the metric will tend to zero.

All three components of the performance metric are necessary to indicate how

well the current map is performing. The three sub-metrics indicate different qualities

that must all be good for the composite metric to be good. These qualities are that

the robot must effectively explain the current sensor measurements, the robot must

be certain of its pose, and the positional certainty must be well shaped.

3.3.4 Robot Relocalization

When instantiating a juvenile hypothesis in a neighboring map frame, it is necessary to

do so without allowing the information from the parent map to make the juvenile map

over-confident. This is importance since the Atlas framework does not maintain any

cross-covariances between map-frames. All map-frames are to be independent from

each other. Therefore when the new robot position is initialized into the juvenile

map-frame, it must do so without prior information, which means that the initial

robot pose has an infinite variance.

Since it is difficult to represent an infinite variance in the standard form of the

Kalman filter, it is simpler to view the relocalization of the robot as mapping a new

robot “feature” from the first observed line features. This process is identical to map-

ping new line features from the robot pose. The only issue is that the data association

of measured lines to the mapped lines requires the robot pose. The strategy employed

in this implementation is to take the robot pose from the parent map, project it into

the juvenile map with a reasonable (but not necessarily consistent) covariance, and

use the pose for the initial data association only. Then the robot pose is reinitialized

when enough lines have been found from which the robot can be fully observed. The
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Figure 3-4: Seeding the robot position for a juvenile hypothesis in frame i using the
current pose in the adjacent map-frame j. The retired hypothesis attached to frame
i has the robot location at xold

i . The hypothesis is rejuvenated to have the robot pose
of x?

i .

details of this approach follow.

When creating a juvenile hypothesis in a retired map-frame Mi we reinitialize

its robot pose xi using the robot pose xj from an adjacent map-frame Mj . (See

Figure 3-4.) First the hypothesis is seeded with a robot pose x?
j projected into frame

i:

x?
i = T j

i ⊕ xj

Σ?
xi

= J1

(

T j
i ,xj

)

ΣijJ1

(

T j
i ,xj

)T
+

J2

(

T j
i ,xj

)

Σxj
J2

(

T j
i ,xj

)T

where J1 (·, ·) and J2 (·, ·) are the Jacobians of the transformation composition oper-

ators [50].

The hypothesis now enters a bootstrapping phase, in which a consistent initial-

ization of the vehicle into the juvenile hypothesis is sought. Sensor measurements,

interpreted with the seeded robot pose, x?
i , are accumulated. This continues until

enough measurements, Z, have been collected to solve explicitly for the robot pose
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independently of x?
i ; this function is w. This approach conserves the statistical inde-

pendence of map-frames.

(Mi,x
new
i ) = w(Mi, Z)

If an explicit solution to w cannot be computed because of lack of explained sensor

measurements, then the hypothesis is invalid and terminated. Otherwise a tenable

juvenile hypothesis exists.

3.4 Map Matching

The Map Matching module is utilized to match corresponding structure and produce

the coordinate transformation between two map-frames. The Atlas framework uses

the transformation to hypothesize loop closures in the Atlas graph. The coordinate

transformation between two maps is easy to produce, given corresponding structure.

The challenge is to discover the corresponding structure between two maps.

The map matching technique employed in this implementation uses signature

strings to aid in the correspondence process. The map signatures are composed

from canonically sorted, transformationally invariant elements of the mapped line

segments. A variant of the longest common substring algorithm is used to efficiently

match signature strings.

Each pair of matching signatures between two maps produces a potential transfor-

mation which may align the maps. The signature match is then scored by how many

lines are brought into alignment. The alignment is evaluated by transforming the

lines in one map such that the lines are in the second map’s coordinate frame, then

counting the nearest neighbor corresponding lines that fall within their respective

Mahalanobis distances. The signature pair that produces the most correspondences
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is deemed the best pair, and the transformation is re-estimated directly from the

correspondences.

Map matching can be treated as a search through the transformation space that

maximizes the alignment of the two maps. The signature strings are simply utilized

to discover sample transformations in the transformation space to test for alignment.

Once the best correspondence between the two maps has been determined, the trans-

formation can be optimized to minimize the alignment error between corresponding

map features.

3.4.1 Line Signature Strings

The method builds a signature string for each line in the map. The elements of the

signature string consist of transformationally invariant metrics from the signature’s

line to all other lines in the map. There are two types of such metrics, depending

on whether the lines are parallel or not. The metric using parallel elements is the

distance between the midpoints of the two line segments. Non-parallel lines have a

metric that consists of the angle between the two lines and the distance along the line

of intersection. (See Figure 3-5.)

The distances of the intersections along the line are not invariant to translations.

This adds some complication to the matching, since first a reasonable offset must

be determined. Several offsets are considered by comparing signature elements with

matching angles and clustering the differences between the intersection distances.

The string match is repeated using the offset computed from every cluster.

The elements of each signature are sorted into a canonical order which defines

the sequence or string to be matched. First all the parallel elements are sorted

by their distance from the line, then the orthogonal elements are sorted by their

intersection distance. When two signature elements of the same type are compared,

their Mahalanobis distance is used to determine whether they match.
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Figure 3-5: Line Signature Elements (a) Parallel Signature elements use the distance
between the lines as the metric. (b) The non-parallel elements use the angle and the
distance of the intersection along the line as the metric.

3.4.2 Repetitive Structure

Repetitive structure in the environment can lead to false map matches. The signature

strings of lines in similar configurations, such as those occurring in multiple equally

spaced corridors, will be nearly identical. Furthermore, since the transformations of

the multiple false matches are likely to be fairly close to that of the correct match,

the cycle verification procedure described in Section 2.2.4 is unlikely to detect the

error.

By matching a map with itself, the repetitive structure can be identified. The

ambiguous signatures are subsequently not used to match with other maps. This

strategy keeps the focus of the map matching on the unique aspects of each map-

frame and reduces the chance of false map matches due to repetitive local structure.

Ambiguities with scales larger than the coverage of the map frame may still cause false

matches; however, these false positives are mitigated by the Atlas cycle verification

procedure.

3.4.3 Alignment Optimization

The correspondences discovered after matching signature strings are used to compute

the coordinate transformation that best aligns the maps. Each pair of matched lines

81



provides two constraints on the transformation:

x cos(φa) + y sin(φa) = ρa − ρb

θ = φa − φb

Where x, y, and θ parameterize the transformation, and the matched line pair is

{L(ρa, φa), L(ρb, φb)}.

The transformation parameters can be determined by a weighted least squares

solution using the constraints from all line correspondences found. The constraints

can be represented as a linear system: Hx = z, where x is the vector of transformation

parameters, and each constraint provides two rows of H and z.

The covariance matrix Σz, whose inverse defines the weights for the least squares

solution, is determined from the Kalman filter covariances of the features in both

maps:

Σz = ∇azΣa∇az
T +∇bzΣb∇bz

T

where Σa and Σb are the corresponding sub-matrices of the matched features from

their respective Kalman filters.

The least-squares solution and covariance for the transformation parameters are

subsequently:

x =
(

HT Σ−1
z H

)−1
HT Σ−1

z z

Σx =
(

HT Σ−1
z H

)−1
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3.4.4 Summary

The Map-Matching procedure for feature-based map representations is summarized

as follows:

1. A signature for both maps is constructed which is an ordered list of elements

describing properties of the map that are invariant to translation and rotation

of its coordinate frame. A comparison operator is defined over two signatures,

yielding a set of correspondences between elements in each list.

2. Each map is matched with itself to identify repetitive structure. Any elements

that correspond to other elements in the same map are removed from the map’s

signature. This dramatically reduces the likelihood of false map matches due

to repetitive structure, by focusing on the unique elements of each local envi-

ronment.

3. The signatures of both maps are now compared. Each element to element

correspondence defines a potential alignment transformation fromMi toMj.

4. Each potential alignment transformation is applied toMi. The validity of each

transformation is evaluated by counting the number η of feature pairs it brings

into alignment with nearest–neighbor gating.

5. The correspondences from the best (largest η) potential transformation with

η > ηmin are used to refine the transformation and its covariance. Each corre-

spondence defines a constraint on the transformation. The combined set of η

constraints are solved in weighted least-squares sense using the covariances of

the feature estimates within each map to form the weights. This process also

yields the covariance of the transformation. The parameter ηmin is set to 4 in

this implementation.
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Map-Match Mi

M j

Figure 3-6: Map-Matching as a search for a transformation between maps that max-
imally aligns common mapped features. Here two maps i and j share features, and
a good map match can be found between them. Note how only a subset of features
are matched.

3.5 Experimental Results

The experiments used to evaluate the laser line implementation of the Atlas frame-

work arise from two major data sets. The first data set challenges the framework with

a large scale task to navigate and map the entire third floor corridor network sur-

rounding MIT’s Killian Court, a cluster of 12 interconnected buildings at the center

of the MIT campus. The second data set illustrates the long duration performance

when repeatedly traversing a relatively small area in the MIT Physics’ office floor.

For both experiments, Atlas adjacency matrix, map time history, and the final op-

timized map are depicted. Also the intra-map Kalman filter residual and inter-map

optimization residual statistics are reported.
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3.5.1 MIT’s Killian Court

The Killian Court data set is just over two hours long, throughout which the robot

travels a distance of 1, 453 meters. Figure 3-7(a) shows the hand-drawn topological

path of the vehicle superimposed on an architectural drawing of the Killian court area.

The route contains nested loops of various sizes and topologies, starting and ending

in the elevator of Lobby 7. Figure 3-7(b) shows the dead-reckoned path resulting

from simply integrating the odometry data. The dead-reckoning path clearly reveals

systematic biases in the odometry.

The severities of the odometry error make this data set challenging. The advanced

odometry modeling is necessary to improve the navigation performance in the pres-

ence of extreme odometry errors; however, the addition of extra model parameters

makes the Kalman filter difficult to tune. Figure 3-9(a) depicts the odometry bias λ

(from Equations 3.8 and 3.9) as estimated by the local maps’ Kalman Filters.

Further analysis of the values for λ that have been estimated on-line has revealed

that λ has a strong heading dependence that is reminiscent of the heading-dependent

compass biases that one sees with autonomous underwater vehicle navigation data.

This dependence can be visualized by plotting the estimated λ value vs. the original

uncorrected odometry heading. (See Figure 3-9(b).) Accordingly, it is possible to

compute a one-time calibration for λ as a function of heading for the b21 synchro-drive

mechanism. Dramatically improved dead-reckoning estimates are obtained when this

heading-dependent calibration is applied to the b21 odometry data, as illustrated by

comparing Figure 3-10(a) with Figure 3-10(b).

In this section, results are presented both with and without the correction of the

systematic odometry bias errors. All subsequent results in the thesis utilized the

corrected odometry.
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Results with systematic bias errors

Figure 3-8(a) shows the resulting maps under a Dijkstra projections with the first

map as root, where as Figure 3-8(b) shows the result of applying the global optimized

map projection as described in Section 2.4. A total of 75 map-frames were built, each

containing a maximum of 15 mapped line segments.

Results after removal of systematic bias errors

Figure 3-11(a) shows the resulting maps under a Dijkstra projections with the first

map as root, where as Figure 3-11(b) shows the result of applying the global optimized

map projection as described in Section 2.4. A total of 84 map-frames were built, each

containing a maximum of 15 mapped line segments.

Figure 3-12(a) plots the numerical label of the dominant map-frame with time.

During map-frame genesis, a counter is incremented and the newly created map is

labeled with its value. As new ground is covered, the value of the dominant map

ID increases. When the robot returns, however, to a previously mapped area, the

dominant map ID decreases when a loop closure traversal is successful. For example,

approximately 47 minutes into the experiment the robot returned to the area first

mapped. Similarly, after an hour and a half, the vehicle returned to a region mapped

50 minutes earlier, and at the end of the run, the robot returns to its starting area.

The histograms of the Kalman filter line update residuals (Figure 3-13) show the

performance of the local maps. The residuals are from the difference between the line

measurements and the predicted measurement computed from the Kalman filter robot

state and associated map line. The lines residuals when taken together have a mean

squared error of (6.2cm)2 and (2.3◦)2 on the ρ and φ line parameters, respectively.

The residuals are in agreement with the accuracy of the laser scanner which has about

a 10cm standard deviation in the range measurements.

The global map performance can be characterized by the residuals from the global
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optimized map projection. These residuals are the differences between the projected

map origins and the corresponding Atlas edge transformations after the final op-

timization iteration. Figure 3-14 shows the histograms of the residuals where the

standard deviation of the errors are 14.0cm, 13.0cm, and 1.2◦, for the x, y, and θ

parameters, respectively.

Figure 3-15 shows the instantaneous sum of kernel and user time for the Atlas

process as well as its smoothed value. Note that as more features are mapped, and

more map-frames are created, the mean processor load stays nearly constant.

The experiment demonstrates the ability of Atlas to map a large network of cam-

pus corridors with laser lines while closing multiple, nested loops, in roughly constant

time performance per measurement.
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Figure 3-7: (a) The manually drawn topology of the driven route overlaid on an
architectural drawing of part of the MIT campus (Killian Court). The principle east-
west passage, known as the “infinite corridor”, is approximately 225 meters long. (b)
The trajectory derived from uncorrected odometry alone.
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Figure 3-8: (a) Dijkstra projection and (b) global optimized map projection for pro-
cessing of laser data on the Killian Court data set using uncorrected odometry. Each
local map is drawn in a different color and labeled with the map id next to its coor-
dinate origin. The valid Atlas edges are drawn in black, whereas unverified edges are
drawn in magenta.
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Figure 3-9: The estimated odometry bias parameter λ as a function of (a) time and
(b) uncorrected heading on the b21 robot. A sinusoidal function is fitted to the values,
shown in red. Once the systematic dependence is factored out from the odometry
data, the corrected path shown in Figure 3-10(b) is produced.
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Figure 3-10: (a) The original uncorrected odometry trajectory for the Killian Court
data set. (b) The updated odometry trajectory when compensating for the systematic
heading dependency on the bias parameter λ.
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Figure 3-11: (a) Dijkstra projection and (b) global optimized map projection for
processing of laser data on the Killian Court data set using corrected odometry.
Each local map is drawn in a different color and labeled with the map id next to its
coordinate origin. The valid Atlas edges are drawn in black, whereas unverified edges
are drawn in magenta.
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Figure 3-12: (a) Map ID vs. time, total activity vs. map ID, and the number of
active hypotheses vs. time for the laser feature-based SLAM processing. (b) Atlas

adjacency matrix. Dots indicate genesis edges, circles indicate verified edges, and
crosses indicate unverified map-match edges.
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Figure 3-13: The histograms of the Kalman filter residuals for line updates on (a) rho
and (b) phi parameters.
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Figure 3-14: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation.
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Figure 3-15: Processor load and current map ID for laser data run. The general linear
increase in current map ID is indicative of the mapping of new areas. The occasional
“fall-back” to a map with a lower ID represents successful loop closing —the re-use
of an existing map. (The processor load is plotted in arbitrary units.)
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3.5.2 Ten loops in a small-scale environment

The second experiment illustrates a situation in which many loops are repeatedly per-

formed in a relatively small-scale environment. The robot executed multiple “figure

eight” maneuvers within the environment depicted in Figure 3-16(a). Each corridor

was traversed several times in both directions. The total path driven was 690 meters

taking 45 minutes to complete. Figure 3-16(b) is the “dead-reckoned” path using

odometry data.

Figure 3-17 shows the Atlas output for this environment with laser feature-based

local mapping under the Dijkstra and optimized map projections. A total of twenty

six map-frames were created. Figure 3-18(a) shows the adjacency matrix of the Atlas

graph. Figure 3-18(b) plots the ID of the dominant map vs. time for this experiment,

as well as the number of active hypotheses vs. time and the total amount of time

spent in each map-frame.

The ideal performance would be indicated by no more maps being generated after

the area is mapped; however, with the laser line implementation, relocation into

previous maps is not always possible and new maps are generated. Relocation mainly

fails in the long corridors where a previous map cannot be robustly reinitialized using

only two parallel wall measurements. The new maps, however, are quickly matched

to previous maps and relocation occurs in other maps.

The histograms of the Kalman filter line update residuals (Figure 3-19) show

the performance of the local maps. The lines residuals have a mean squared error

of (5.3cm)2 and (1.9◦)2 on the ρ and φ line parameters, respectively. The global

map performance can be characterized by the residuals from the global optimized

map projection. Figure 3-20 shows the histograms of the residual of the Atlas edge

transformations with respect to the projected pose of each map-frame. The standard

deviation of the errors are 10.9cm, 9.3cm, and 0.9◦, for the x, y, and θ parameters,

respectively.
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Figure 3-16: (a) The architectural plan and (b) Odometry for ten multi-loop data
set. The start position of the vehicle (0, 0) is near the center of the operating area.
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Figure 3-17: (a) Dijkstra projection and (b) global optimized map projection for
processing of laser data on the Ten Loops data set. Each local map is drawn in a
different color and labeled with the map id next to its coordinate origin. Many of the
maps have their origins in the hallways because these are the locations where robot
relocation is difficult and new maps are generated.
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Figure 3-18: (a) Atlas Adjacency matrix. Dots indicate genesis edges, circles indicate
verified edges, and crosses indicate unverified map-match edges. (b) Map-frame gene-
sis and activity. The generation of new map-frames drops off as the area becomes fully
mapped and maps are re-used; however, new maps continue to be generated when
transitioning from areas that have poor relocalization characteristics, such as the
long hallways. The lower figure shows how the average number of active hypotheses
remains nearly constant after the area has been mapped.
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Figure 3-19: The histograms of the Kalman filter residuals for line updates on (a) rho
and (b) phi parameters.

−1 0 1
0

20

40

60

80

x res (meters)
−1 0 1
0

20

40

60

y res (meters)
−5 0 5
0

20

40

60

θ res (degrees)

Figure 3-20: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation.
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Chapter 4

Atlas with Wide Angle Sonar

4.1 Introduction

The second major implementation of the Atlas framework uses wide angle monaural

ultra-sonic ranging sensors. For simplicity, these sensors are refer to as sonars. The

B21 robot used in this implementation has a ring of 24 sonars. Each sonar sensor

sends an ultra-sonic ping with a beam width of about 30 degrees, measuring the time

it takes to receive the first echo which is converted (using the speed of sound) to a

distance measure. These sonars are partially observable sensors since they measure

only the range to the nearest surface in the beam and not the surface’s exact bearing

within the beam. The sonar measurements can be treated as regions of constant

depth from which the phenomena causing the echo is somewhere on the region. This

assumes, however, that the echos are from single bounces of the sound ping and not

multi-path echos from several surfaces. The first echo received is the shortest and

hence typically not due to multipath.
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4.2 Sonar Features

There are two major types of echos: spectral echos and diffuse echos. Specular echos

come from the direct reflection of the sonar ping along the surface normal, and diffuse

echos come from the scattering of the sound from a corner or imperfection in the

surface. In the indoor environments used to test this implementation, specular echos

come from walls and doors whereas diffuse echos come from door moldings, corners

and cracks in the walls.

As in Chapter 3, the environment is represented in 2D (the heights of observed

objects are ignored). This 2D assumption transforms the regions of constant depth

into arcs of constant depth, and dramatically simplifies the models and computation

required to process them.

The indoor environment led to the decision to use two types of features to model

the objects from which echos arise. The walls and doors are modeled as 2D line

segments which primarily consist of spectral echos whose arcs of constant depth are

all cotangent. In contrast, corners, surface imperfections and door moldings are

modeled by 2D points in which arc of constant depth all intersect. (See Figure 4-1.)

This model is not complete, since there are objects which fit neither model. For

example, cylinders look almost like points but have a constant range bias due to

their radius. Curved surfaces may look almost like lines, except that the surface

normal’s direction changes along the curve. However, the environments for which the

results are presented do not contain many such objects, and the assumption is that

mismodelling a few features does not cause significant problems.

4.2.1 Point Features

Point features in the scene result in echos whose arcs of constant depth all intersect

at the point.
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(a) (b)

Figure 4-1: There are two major type of features used to model the sonar echos. (a)
Line features where all the echos’ arcs of constant depth are cotangent. (b) Point
features in which all arcs intersect.

The point of intersection of two sonar echos can be determined by first intersecting

the circles of the two arcs, then determining which of the two possible solutions (if

any) lie within the beam width of the sonar.

The intersection point (x, y) of two circles at points (x1, y1) and (x2, y2) with

radiuses of r1 and r2 is solved as follows. First compute the determinant det

det =
√

((r1 + r2)2 − d2) (d2 − (r2 − r1)2)) (4.1)

where d2 is
√

(x2 − x1)2 + (y2 − y1)2, or just the squared distance between the centers

of the two circles. The intersection points are determined using the two possible signs

of the determinant det in the following formulas:

x =
1

2

(

−(y1 − y2)(±det)− (r2
2 − r2

1)(x2 − x1)
2

d2
+ (x1 + x2)

)

(4.2)

y =
1

2

(

+(x1 − x2)(±det)− (r2
2 − r2

1)(y2 − y1)
2

d2
+ (y1 + y2)

)

(4.3)

If det is real then the circles intersect in two places. If the determinant is zero then the

circles are tangent and intersect in one place. Finally, if the determinant is imaginary,
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the circles do not intersect.

4.2.2 Line Features

Line features are the result of multiple cotangent echos.

In general there are four possible lines cotangent to two circles, but only the lines

that are on the same side with respect to the circles are of interest to sonar processing.

Similarly to Section 4.2.1, first a determinant det is computed which indicates whether

the two circles have cotangent lines or not.

det =
√

(x2 − x1)2 + (y2 − y1)2 − (r2 − r1)2 (4.4)

The cotangent lines, parameterized by ρ and φ, are then:

ρ =
(x1y2−x2y1)(±det)− (y2−y1)(r1y2−r2y1)− (x2−x1)(r1x2−r2x1)

(x2−x1)2 + (y2−y1)2
(4.5)

φ = arctan

(

−(x2−x1)(±det)− (y2−y1)(r2−r1)

(y2−y1)(±det)− (x2−x1)(r2−r1)

)

(4.6)

When the determinant det is imaginary, there are no cotangent lines. This occurs

when one circle lies completely inside the other.

4.3 RANSAC Data Association

Because both line and point features have two degrees of freedom, and each measure-

ment has only one DOF, these features cannot be initialized from a single position.

Multiple echoes (at least two) must be grouped and matched from various positions

so that all the DOFs of the features become observable. Thus a mechanism is re-

quired to discover which echoes belong together from multiple vantage points and to

determine which type of model best describes the groups of echos. This mechanism
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is the sonar data association and segmentation engine, or simply referred to as “the

engine” in this chapter.

The sonar data association and segmentation engine includes an efficient random

sample and consensus (RANSAC) based method [6]. The basic idea is to pick a

random sample of two sonar echos from a window of different measurement positions,

check if the samples fit a line or a point, and then count how many of the remaining

echos are in agreement with the line or point.

Others have used Hough transform approaches which are similar but much less

efficient. The Hough transform approaches grid the feature parameter space, then

discretizes each echo into a grid, accumulating votes for which grid cells (i.e. feature

parameters) could have generated the echo. The grid cells with the most votes indicate

the features that best explain the data. The RANSAC approach is similar since each

random sample determines a point in the feature parameter space that is then voted on

by the remaining echos; however, the entire parameter space need not be represented.

4.3.1 Adjacency preprocessing

The basic implementation of the RANSAC strategy is not necessarily efficient, since it

requires that every echo be checked when scoring a random sample. This is inefficient

because most of the echos do not match one another. Therefore the engine makes

use of some preprocessing to roughly determine which echos may possibly match,

consequently speeding up the process for finding a valid random sample and scoring

the relevant echos for consensus.

The engine builds a graph with all the sonar echos from a short sequence of robot

positions as vertices. The edges of the graph correspond to echo pairs which may

match. In fact, there are two graphs; one for discovering point matches and another

for line matches. As each new round of sonar measurements becomes available, the

engine adds new nodes and edges to the graphs. Likewise, when old positions leave
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the window of active positions, the old vertices and their corresponding edges are

removed from the graphs. The graphs utilize an adjacency list sorted by the echo’s

id number to speed up these incremental changes.

The tests for determining which echos may match, and hence which edges exist in

the graphs, take advantage of the bounds of the sonar beam. When considering point

features, two echos are compared by first checking the distance between the center of

each arc of constant depth. See Figure 4-2. If the distance is greater than the average

width of the two beams at the range point then the pair is ignored. Subsequently if

the determinant computed as in Equation 4.1 is imaginary, then the echos also cannot

match.

Echos are also checked for matching as line features. First the echos are checked

to determine whether they come from the same general direction. The angle between

the center of the two sonar beams must be less than the beam width’s angle before the

echos can be considered to originate from the same line. The echos are further checked

by looking at the difference of their centers projected on an approximate guess to the

line’s normal. The approximate normal is simply computed as the average direction

of the two echos. If the projected difference is less than a threshold computed from

the beam width angle and expected sensor measurement noise, then the echo pair is

considered for further processing. As a final test, the determinant from Equation 4.4

is computed, and must be real-valued, for the two echos to be considered a possible

line match. (See Figure 4-3.)

The employment of graphs greatly increases the performance of the RANSAC

trials. Valid pairs of echos are more likely to be picked because only adjacent pairs

are considered for samples. Furthermore only the echos in the union of the sample

pair’s adjacency must be tested to score the pair.

The sonar data association engine processes sonar echos to extract groups of echos

that originate from possible points or lines in the environment. For each navigation
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d

Figure 4-2: Sonar echos are considered to match at a point only when the distance
between the centers of their arcs is less than the average width of the arc.

d

Figure 4-3: Sonar echoes are considered to match on a line only if the angle between
the beam directions is less than the beam width, and the projected range difference
is less than a threshold.
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time step, the engine extracts points and lines one at a time, marking the correspond-

ing echos as used. Each line or point is the result of a series of RANSAC trials where

the line or point with the most consensus echos is chosen.

The extraction ends when the RANSAC trials no longer find consensus greater

than a threshold. This threshold is empirically determined and typically ranges from

between 10 and 40 consensus votes. (In this implementation, the total number of

active echos ranges between 750 and 1500 echos.) The exact value of the threshold

is not very significant; however, it may slightly increase the time spent processing

the echos if the threshold is too low. Conversely, if the threshold is set too high, the

engine may not be able to detect valid features.

4.4 Multiple Vantage-Point Kalman Filter

As with the laser lines implementation in Chapter 3, the sonar Atlas implementation

uses an Extended Kalman filter to maintain the local navigation and map state. There

are, however, a few key differences. The sonar implementation maintains several past

robot poses in the state vector, and both points and lines are mapped as features of

the environment.

4.4.1 Saved robot poses

Since features mapped by sonar cannot be initialized from a single vantage point,

multiple robot poses are maintained in the Kalman filter state. The Kalman filter

maintains the current robot pose as the robot moves within the environment, and

periodically the Kalman state is augmented with a copy of the current pose that

will not be propagated in subsequent time steps. These augmented states behave

like dropped vantage-points from which multiple views of sonar echoes are used to

initialize the mapped features.
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A significant baseline between vantage-points is needed to properly initialize the

features from sonar echos. Hence it doesn’t make sense to save too many dropped

states which are too close together. A new saved robot pose is created only when the

robot travels a minimum distance (0.4 meters in this implementation) from the previ-

ously dropped pose. Likewise, it doesn’t make sense to have an ever-increasing bank

of saved robot poses. Firstly, the bounded-complexity assumption for the Atlas local

SLAM module would be violated. Secondly, vantage-points are less likely to share

measurements from corresponding features as the distance between them increases.

These problems are remedied by removing the corresponding rows and columns

of the oldest saved robot pose from the Kalman state and covariance matrix. The

complexity of the filter is bounded by limiting the maximum number of saved states.

When the limit has been reached, then the oldest robot pose is discarded before saving

a new one.

It is important to note that this implementation of the Kalman filter is similar to

that of a fixed-lag Kalman smoother [25]. Both Kalman filter versions have a bank of

states corresponding to the main state at past time steps. The difference lies in the

Kalman propagation step. In the fixed-lag smoother, all the states are propagated

each time step; the extra states are simply delayed from the current state. In the

multiple vantage point Kalman filter, only the current state is propagated; the extra

states’ positions in the state vector are simply shifted as new states are dropped and

old ones deleted. The later approach has the advantages that the dropped states need

not be propagated at every time step; neither do they need to be created at regular

time intervals. The placement of dropped states can be linked to distance traveled

instead of time spent, which is more appropriate for ensuring adequate geometry

when initializing new features.
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4.4.2 Feature updates

Updates to the saved robot poses in the Kalman filter are transferred to the corre-

sponding poses in the sonar data association engine. Since the engine maintains a

much denser collection of robot poses, the corrections for poses without a correspond-

ing Kalman filter state are interpolated.

Measured lines and points discovered with the data association engine are used to

match mapped lines and points from the Kalman filter state. In fact, the procedure for

matching lines is identical to that presented in Section 3.3.3, and the point matching

procedure is very similar. When a match between a measured line or point and a

mapped line or point is found, the Kalman filter is updated.

The corresponding sonar echos are used to update the Kalman filter. The mea-

sured lines are simply used to match with the mapped lines and determine the associ-

ation of echos to their respective features. Using the echos directly is more preferable

than using the measured line features, because it is easier and more accurate to model

the noise. The covariances of the measured line and points from data association en-

gine are approximated from the nonlinearities of their initialization functions. Using

the echos directly avoids an extra linearization step.

Feature updates are processed by forming the residual for each measured echo. The

echos can be predicted from the corresponding vantage-point and mapped features.

The predicted echo distance for point features uses the distance between the point

feature and the sonar sensor’s position, transferred into map coordinates.

dp =
√

∆x2 + ∆y2

∆x = (cos θr xs − sin θr ys + xr)− xp

∆y = (sin θr xs − sin θr ys + yr)− yp

where (xs, ys) is the location of the sonar sensor in the robot’s frame, (xr, yr, θr) is the
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pose of the corresponding vantage-point, (xp, yp) are the coordinates of the mapped

point, and dp is the predicted point echo distance.

The Jacobian of the measurement prediction function can be easily computed with

the chain rule, since the sensor pose is composed with the robot pose as:

∇r dp =

[

∆x
d

∆y
d

0

]

· J1 (xr,xs)

∇p dp =

[

−∆x
d

−∆y
d

]

where xs is the pose of the sonar sensor with respect to the robot frame, and x is the

pose of the robot within the map frame.

When the corresponding feature is a line feature, then the echo distance dl is

predicted by computing the distance of the sonar sensor from the mapped line as

follows:

dl = ρl − cosφl xrs − sin φl yrs

xrs = cos θr xs − sin θr ys + xr

yrs = sin θr xs + cos θr ys + xr

Likewise its Jacobians are computed:

∇r dl =

[

− cos φl − sin φl 0

]

· J1 (xr,xs)

∇l dl =

[

1 (sin φl xrs − cos φl yrs)

]

The predicted echo distances could be used for data association with the mea-

sured echos; however, it is more robust to use the measured features for matching

with mapped features. There are many spurious echos that are formed from mov-

ing objects, multi-path, or cross-talk between sensors. By grouping echos into sets
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corresponding to lines or points, most spurious echos are disregarded; the remaining,

likely reasonable, echos are used to update the Kalman filter.

4.4.3 Feature Initialization

New features are initialized into the map maintained by the Kalman filter from mea-

sured features that do not correspond to any existing map feature. Multiple vantage-

points are needed to initialize each new feature.

Only echos with corresponding saved vantage-points can be used to initialize the

feature in the Kalman filter. The echos from oldest and newest vantage-points are

used with Equations 4.2,4.3 or Equations 4.5,4.6 to initialize the feature’s state. Sub-

sequently the remaining echos with corresponding vantage-points are used to update

the filter in the same manner as described above.

The Jacobians of the feature initialization function could be derived by directly

differentiating the function; however, it is easier to convert the Jacobians of the

measurement prediction functions. For example, the feature initialization function

g(·) and measurement function h(·) are related as follows:

y = g(x, z)

z = h(x,y)

where x is the robot state, y is the new feature state, and z is the vector of initial

measurements. The Jacobians of the initialization function ∇g are related to the

Jacobians of the measurement functions ∇h.

∇xg = −(∇yh)−1 ∇xh

∇zg = (∇yh)−1
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Table 4.1: Defining map signature elements between pairings of line and point fea-
tures.

Pairing Geometry Element

Point-Point d1
[d1]

Point-Line
d1

d3d2





d1

d2

d3





Line-Line

d3

d4

d 2

d 1

α













d1

d2

d3

d4

α













When exactly two echos are used to initialize a point or line feature, then the

Jacobian Hy is square. When there is a nonzero baseline between the vantage-points,

then this Jacobian will also be invertible.

4.4.4 Performance Metric

The Atlas performance metric is computed exactly in the same manner as with the

laser lines implementation. Please see Section 3.3.3 for details.

4.5 Map Matching and Signatures

The map matching module for the sonar implementation is nearly identical to that

from the laser lines implementation. The main difference is in the design of the
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signatures.

In this implementation, the maps consist of 2D point and line features. The ele-

ments used in creating a map signature are pairings of non-parallel lines, point-line

pairs and point-point pairs drawn from the map. For each pairing, the signature ele-

ment consists of distances and/or angles independent of the map-frame’s orientation

and location. Table 4.1 defines the transformationally invariant metrics used for the

three species of pairings.

The number of signature elements to compare when matching maps with n features

is O(n2) which may lead to O(n4) matches that must be performed. However, the

number of matches that need to be tested can be reduced to O(n2) by sorting the

signature elements into a canonical order, which then reduces the total computational

burden to O(n2 log n).

Each pair of matching signatures defines a potential transformation which aligns

the two map frames. Subsequently each matching signature pair is scored by ap-

plying the alignment transformation and counting the number of map features that

correspond. The correspondences from the highest-scoring signature pair are used to

optimize the alignment transformation between the map frames and to determine its

covariance.

Unfortunately, since the map contains point features, the alignment optimization

cannot be solved with a linear system of constraints. Instead the optimization is

solved with an iterated linearized solution. The constraints from each feature pair

are linearized about the previous solution, and a correction is solved for. In practice,

two iterations are sufficient for convergence, since the initial transformation from the

signature pair is close to the optimal solution.
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4.6 Experimental Results: Killian Court

The same experiment as in Section 3.5.1 is used to evaluate the sonar Atlas imple-

mentation. The robot’s local mapping module was configured to save 10 poses each

0.5 meters apart. The capacity was set such that a maximum of 20 features could be

mapped in each map-frame.

Figure 4-4(a) shows the resulting maps under a Dijkstra projections with the

first map as root, where as Figure 4-4(b) shows the result of applying the global

optimized map projection. A total of 115 maps were built, which is more than the

laser implementation used because the sonar maps tended to be a bit smaller.

The adjacency matrix is displayed in Figure 4-5(b) and indicates the loops that

have been closed. Since relocation has not been implemented when using sonar alone,

all genesis map edges are sequential.

The histograms of the Kalman filter update residuals (Figure 4-6) show the per-

formance of the local maps. The residuals are from the difference between the mea-

sured range measurements and the predicted range measurement computed from the

Kalman filter robot state and associated map point or line. The residuals when taken

together have a mean squared error of (2.7cm)2 and (1.3cm)2 on the point and line

features, respectively. The residuals on the echos when measuring point features is

large than that when measuring line features because there are more modeling errors

on the points. The fact that the shape of the line residual histogram is not sym-

metric is due to some corners in the environment incorrectly being classified as lines;

however, there are not enough misclassifications to severely affect performance.

Figure 4-7 shows the histograms of the residuals of the differences between the

optimized projected map origins and the corresponding Atlas edge transformations.

The standard deviation of the errors are 13.8cm, 10.6cm, and 1.3◦, for the x, y, and

θ parameters, respectively.
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Figure 4-4: (a) Dijkstra projection and (b) global optimized map projection for pro-
cessing of sonar data on the Killian Court data set. Each local map is drawn in a
different color and labeled with the map id next to its coordinate origin. The valid
Atlas edges are drawn in black whereas unverified edges are drawn in magenta.
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Figure 4-5: (a) Map ID vs. time, total activity vs. map ID, and the number of
active hypotheses vs. time for the sonar feature-based SLAM processing. (b) Atlas

adjacency matrix. Dots indicate genesis edges, circles indicate verified edges, and
crosses indicate unverified map-match edges.
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Figure 4-6: The histograms of the Kalman filter measurement residuals for (a) point
updates and (b) line updates.
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Figure 4-7: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation.
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Chapter 5

Atlas with 2D Laser Scan-matching

5.1 Introduction

Scan-matching is another local navigation module for Atlas. It uses the laser scan

points directly instead of extracting features such as lines from the scans. Scan-

matching has been a popular approach to SLAM with dense laser scanner data [37,

27, 53].

In this chapter, a novel implementation that combines scan-matching with a linear

Gaussian state estimation formulation [48] is presented. The key to the method is

to use past vehicle poses as elements in the SLAM state vector [34], and using scan

matching to formulate measurements that are a function of two different vehicle poses.

This provides an effective means to obtain uncertainty estimates for SLAM with scan-

matching, an issue that has been identified as problematic in previous research with

scan matching [60].

The map representation is a collection of laser scans. Each laser scan is associated

with a saved robot pose. The map state vector is the concatenation of the current

robot pose and all saved robot poses. The joint probability of all the poses is main-

tained with a single multivariate Gaussian probability density function. Scans are
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matched with the Iterative Closest Point (ICP) algorithm [5]. The ICP algorithm

produces the relative transformation between two scans, its uncertainty, and a score

of how much the scans overlap.

5.2 Iterative Closest Point Scan-matching

ICP is a simple algorithm used to align two clouds of points with unknown correspon-

dences. The algorithm proceeds in two steps. In the first step, point correspondences

are found by matching each point from one scan to its closest point in the other

scan. The second step then finds a coordinate transformation that minimizes the er-

ror between the matched point correspondences. These two steps are repeated until

convergence is achieved or a maximum number of iterations has occurred.

The pseudocode for the ICP scan matching algorithm follows:

ICP-Scan-Match(scana, scanb, T
b
a)

1 for i← 1 to maxiter

2 do µab ← Find-Closest-Points(scana, scanb, T
b
a)

3 T b
a ← Update-Transform(µab, scana, scanb, T

b
a)

4 Σab ← Compute-Covariance(µab, scana, scanb, T
b
a)

5 return {T b
a , Σab}

where scana, and scanb are the laser scans, T b
a is the relative coordinate transform

between the scans’ centers, µab is the correspondence between the points of the two

scans, and Σab is the covariance of the final alignment.

5.2.1 Normals

The ICP algorithm can be improved when surface normals for each scan point are

available. The normals are used in the first step to limit matches between points with
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Figure 5-1: Iterative Closest Point. The main assumption is that the points are
sampled from a surface. Consequently after determining correspondences between
closest point, the “force” on each point is directed along the surface normal.

normals that are not pointing in the same general direction. In the second step, the

error of the point match is only considered in the direction of the surface normal.

This alleviates the issue when a surface is not sampled at exactly the same points in

the two scans. (See Figure 5-1.)

The normals for each scan point are approximated using the assumption that

points are sampled from a continuous surface. Given the sequential points A, B, and

C, the normal for point B is taken as the average of the normal for lines AB and

BC. (See Figure 5-2.) The continuous surface assumption does not hold at occlusion

boundaries or at step edges in the scan. Therefore if the distance between points A

and B or between B and C is too great, only the shorter line is used to determine

normal. When both distances are too large, i.e. when a thin pipe is measured, the

normal is simply set to point towards the origin of the scan.

The quantization and sensor noise present in the SICK PLS scanner makes the

computation of normals troublesome. The scanner has approximately 7cm standard

deviation measurement noise, and the readings are quantized to 5cm. Since adjacent

scan points are separated by a distance that varies from about 2cm to 30cm, the noise

has a significant effect (13◦ to 74◦) on the normal directions.
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A

B

C

Figure 5-2: The normal for point B is computed from the average of the normals of
the lines AB and BC.

To mitigate this problem, the ranges of each scan are prefiltered to remove noise

and smooth the resulting normal directions. The ranges are treated as a 1D sequence

filtered by a 24 tap FIR low-pass filter with a cutoff frequency of about 0.2π. Since

the filter is so long, care must be taken not to smooth away valid range discontinuities

arising from, for example, object boundaries. Therefore, the filter is modified by a

mask that zeros out the taps corresponding to ranges that are more than a thresholded

difference from the center tap. Consequently, when smoothing a particular range

measurement, only the nearby ranges that are most likely to be from the same object

are used as support in the filter. The edge preserving effects of this modified filter

are crucial to computing reliable scan point surface normals.

5.2.2 Transformation Update

In each ICP iteration, after the scan point correspondences have been computed,

the prior alignment transformation T b
a is updated. The update should minimize the

alignment error given the current correspondences. The formula for the alignment

error uses the difference between each corresponding scan point in the direction of

the normals:

Ealign =
∑

(a,b)∈µab

(

nT
a

(

pa − T b
apb

))2
(5.1)
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where pa and pb are the scan point vectors, na is the normal of point a, T b
a is the

alignment transform, and Ealign is the total alignment error.

The objective is to determine the transformation that minimizes the alignment

error. There is no linear solution for the optimal transformation because the rotation

component of the transformation introduces a nonlinearity. Instead the error function

is linearized about an initial guess for the transformation, and an optimal linear

correction is solved for. The error Equation 5.1 can be written in vector form:

Ealign = h(T b
a)Th(T b

a) (5.2)

where each row of the vector function h() is a term from the summation in Equa-

tion 5.1. The linearized error can then be expressed with a first order Taylor expan-

sion:

h(T b
a) ≈ h(T b

a0) + H













dx

dy

dθ













(5.3)

where H is the Jacobian of h with respect to x,y, and θ.

Differentiating Equation 5.2 with respect to the unknowns (x,y, and θ), using the

approximation in Equation 5.3, and setting the expression to zero yields the linear
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system that is solved for the optimal linear solution.

0 = 2HT













H













dx

dy

dθ













+ h(T b
a0)













(5.4)













dx
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dθ













= −
(

HTH
)−1

HTh(T b
a0) (5.5)

where each row Hi of H is

Hi =

[

−nx −ny (nx(pbx sin θ + pby cos θ) + ny(−pbx cos θ + pby sin θ))

]

The updates are added to the transformation parameters, and subsequently the

linearization procedure may be iterated a few times to ensure convergence.
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Robust outlier weighting

To mitigate the effect of outliers in the data (from non-overlapping regions of the

scans, or moving objects) the error of the matches is modified by a Lorentzian which

smoothly down-weights errors when they become too large. The Lorentzian weighting

is equivalent to assuming a Cauchy (instead of a Gaussian) error distribution.

The alignment error equation is modified by the Lorentzian ρ(·).

ρ(x) = log
(

r̄2 + x2
)

Erobust =
∑

ρ
(

hi(T
b
a)
)
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where r̄ defines the soft outlier threshold.

Again the parameters which minimize the error are computed by differentiating

the error function and setting the results to zero. The only difference between using

Equation 5.6 and Equation 5.2 is that the Lorentzian adds the term 1
(r̄2+h2

i )
to each

row. Each term can be seen as a weight for the constraint from each point correspon-

dence that depends on the initial error. The weights are collected into a diagonal

matrix W and the weighted least squares solution is computed.

W =













. . . 0

1
(r̄2+hi(T b

a0
)2)

0
. . .













0 = HTW













H













dx

dy

dθ













+ h(T b
a0)

























dx

dy

dθ













= −
(

HTWH
)−1

HTWh(T b
a0)

Even though the optimal minimization of this Cauchy error distribution is non-

linear and requires multiple iterations for convergence, empirical evaluations have

determined that one iteration suffices, since the minimization step is repeated in the

iterations of the ICP algorithm anyway.

Alignment Transformation Covariance

The covariance of the scan-match transformation is determined after the final ICP

transformation update step. The final point correspondence is used with the align-

ment error Equation 5.1 to determine the average point error variance. Subsequently

the point error variance is used in conjunction with the Jacobians of the alignment
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error with respect to the transformation parameters to form the covariance of the

alignment transformation.

The final point correspondence is determined by removing all point pairs from the

last ICP iteration that exhibit a large error. The value of threshold for the large error

is not critical; in this implementation is is taken to be about 30cm, which is 3 times

the standard deviation of the laser scan point noise.

The point match error variance σ2
p is computed as the sample variance of the terms

in the summation of Equation 5.1.

σ2
p =

1

N − 1

N
∑

i=1

hi(T
b
a)2

=
1

N − 1
Ealign

where N is the number of point correspondences.

The covariance of the transformation parameters [x, y, θ]T is computed by taking

the covariance of the final update (Equation 5.5) using the fact that E[hhT ] = σ2
pI.

Σab = E

























dx

dy

dθ













[

dx dy dθ

]













= (HTH)−1HT E[hhT ]H(HTH)−1

= σ2
p(H

TH)−1

The covariance of the transformation update is dependent on the number of corre-

sponding scan points and the average error of each correspondence, as well as the

geometry of the scans. For example, the covariance will be ill-conditioned when the

normals of the scans points do not span a 2-dimensional space. This is particularly

evident in environments such as long hall ways where only two parallel flat walls are

126



observed.

5.3 Pose Snapshot Kalman Filter

As in the Chapters 3 and 4, a Kalman filter is used to maintain the state and co-

variance of the current robot pose and the map states. But in the scan-match im-

plementation the map representation is simply a collections of robot poses with their

respective laser scans. (See Figure 5-3.) Therefore the filter state is comprised solely

of robot poses. There are no direct map features maintained in the filter, and no

features need to be extracted from the laser scans. Each saved robot pose maintains

a “snapshot” comprised of the raw measurements from the corresponding time step,

hence the term Pose Snapshot Kalman filter.

As with the Multiple Vantage Point Kalman filter from Chapter 4, only the current

robot pose is propagated at each time step, and new saved poses are added to the

map after a fixed distance of robot travel. Additionally, a new scan pose is added to

the map if none of the previous scans matched more than 50 percent with the current

scan. Maps are bounded naturally by limiting the number of saved scan poses (in

this implementation to 15).

To update the Kalman filter from the new measurements, the current laser scan

is matched (with ICP) in succession to each of the saved scans. If there is significant

overlap between the current and any saved scan, the transformation from the ICP

algorithm is treated as an observation of the relative pose between the two scans.

At every navigation iteration, the Kalman filter is propagated with the odometry

measurements, and the current scan is used to update the filter. Robot propagation

with odometry is processed as described in Section 3.3.1. Since updates from scan

matches are so rich, it is sufficient to use the simple odometry model. It is even possi-

ble to utilize the scan-match filter without odometry measurements in environments
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Figure 5-3: The map is represented by saved robot poses and their respective scans.
The alignment between the current scan and any suitable saved scan is used to localize
the robot.
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with no ill-conditioned views. Results are presented in Section 5.5.4 where odometry

measurements were not available. In this case, the robot pose is propagated with zero

velocity from its previous position, and the propagation uncertainty is increased to

account for motion from the maximum velocity of the vehicle.

5.3.1 Relocalization

The relocalization process for the scan-match pose snapshot filter is very straightfor-

ward. The Atlas edge transformation from the parent hypothesis is used to initialize

the ICP iterations for the current scan. The pose snapshot with the largest over-

lap with the current scan is used to initialize the current pose of the robot into the

Kalman state as if it were a new feature. Subsequent pose snapshots with significant

overlap are updated normally.

5.3.2 Performance Metric

After every SLAM iteration the performance metric must be computed for the Atlas

framework. The performance metric is based on how many scan-points in the current

view match to previous scans, as well as the covariance of the current pose.

q =
Nmatched

Npoints

·
1

1 +
√

det(Pxx)
det(P∗

xx)

where Nmatched is the number of point in the current scan that were matched to

previous scans, Npoints is the total number of valid points in the current scan, Pxx is

the sub-block of the Kalman covariance matrix corresponding to the current robot

pose, and P∗
xx is the typical pose covariance for comparison with the current pose

covariance. Note that the term in the performance metric for the current robot

performance is identical to Equation 3.16.
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The parameter det(P∗
xx) governs how much pose uncertainty is acceptable in the

map hypothesis. Together with the map capacity, the typical robot uncertainty affects

the size of the map. When the accepted uncertainty is large, then the robot may

continue to use current map for a longer distance than if the parameter restricted the

robot uncertainty to be small. This implementation uses the value (1◦ · 25cm · 25cm)2.

5.4 Map Matching

When using scan-matching as the local mapping strategy for Atlas, the map match-

ing module also uses ICP. Since there is typically a larger uncertainty in the initial

arrangement between the maps, some extra steps are needed to insure that the ICP

algorithm converges quickly and to the global minimum.

Firstly, all points from each saved scan are transferred to the base coordinate

frame of the map. Then a down-sampled version of the scan is formed with the aid

of a grid. The down-sampled scan consists of the average of all the points from the

original scans that fall in each grid cell. A modified ICP algorithm subsequently

processes the down-sampled scans. The ICP is modified to allow matches, not just

between nearest pairs of points, but from all points in the second scan that are within

a distance threshold of points in the first scan. These multiple point correspondences

enable the algorithm to find a transformation within the “catchment basin” of the

global minimum error match.

Once the modified low-resolution ICP match has converged, its output transfor-

mation will be slightly biased by the inclusion of multiple correspondences for each

point. This transformation is used, however, to initialize a regular ICP match using

the full resolution scans. Since the full resolution scan is initialized with a trans-

formation that is a much better guess, it is less likely to get stuck in a false local

minimum of the error function.
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Unlikely map matches can be quickly detected after the low resolution ICP con-

verges (or doesn’t) by thresholding the percentage of overlap between the maps. It is

often unnecessary to attempt the computationally intensive full-resolution match.

5.5 Experimental Results

The scan-match Atlas implementation is evaluated using the same datasets as de-

scribed in Chapter 3. In addition, results from processing two third-party data sets

are also shown. The first third-party data set is from an outdoor experiment, run in

Victoria Park, Sydney, courtesy J. Guivant and E. Nebot. The second third-party

data set is from an underground coal mine in Pennsylvania, courtesy S. Thrun.

5.5.1 Killian Court

Figure 5-4 shows results for the Killian Court experiment (Section 3.5.1, page 85)

but using laser scan-matching as the local SLAM module. The maximum number of

vehicle poses in a map-frame was set to fifteen. Figure 5-4 shows the global optimized

map, Figure 5-5(a) shows the map adjacency matrix, and Figure 5-5(b) shows the

active map ID vs. time. The visual quality of the final optimized map is better using

scan matching instead of feature-based SLAM, however the scan-matching approach

would not be successful with reduced quality data, such as sonar.

The histograms of the pose update residuals in the scan-match Kalman filter

(Figure 5-6) show the performance of the local maps. The standard deviation of the

residuals are 2.2cm, 3.3cm, and 0.37◦, for the x, y, and θ parameters, respectively.

respectively.

The global map performance can be characterized by the residuals from the global

optimized map projection. Figure 5-7 shows the histograms of the residual of the

Atlas edge transformations with respect to the projected pose of each map-frame.
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Figure 5-4: Global optimized map and Atlas graph for processing of the Killian Court
data set using laser scan-matching as the local mapping method.

The standard deviation of the errors are 3.3cm, 3.8cm, and 0.56◦, for the x, y, and θ

parameters, respectively.

5.5.2 Ten Loops

Figure 5-8 shows the results of the experiment presented in Section 3.5.2 (page 96)

when scan matching is used as the local mapping module. The maximum number of

vehicle poses in a map-frame was set to ten. Twenty five map-frames were created.

The robot relocation process is more observable when using scan-matching as opposed

to laser line feature, thus the framework does not need to create new maps in the

hallways. The maximum number of maps plateaus halfway through the dataset —

after all the corridors have been traversed in both directions.
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Figure 5-5: (a) Atlas adjacency matrix. Dots indicate genesis edges, circles indicate
verified edges, and crosses indicate unverified map-match edges. (b) Map times.
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Figure 5-6: The histograms of the Kalman filter residuals for line updates on x, y,
and θ parameters.
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Figure 5-7: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation.
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Figure 5-8: (a) Dijkstra projection and (b) global optimized map projection for scan-
match processing of laser data on the Ten Loops data set. Each local map is drawn
in a different color and labeled with the map id next to its coordinate origin.
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Figure 5-9: (a) Atlas adjacency matrix. Dots indicate genesis edges, and circles
indicate map matched edges. (b) Map-frame genesis and activity. After every corridor
is mapped from both directions, midway through the dataset, the creation of new
maps ceases.
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5.5.3 Victoria Park

Here are the results using scan-matching as the local SLAM module for an outdoor

data set, made publicly available by E. Nebot of the University of Sydney. Results

for this data data set were first published by Guivant and Nebot [26], using the com-

pressed filter, an efficient method for large-scale SLAM based on the Kalman filter.

Please refer to Guivant and Nebot [26] for a detailed description of the experimental

setup for acquisition of this data. Processing results for the same data set have been

published by Liu and Thrun [35], using sparse extended information filters. These

researchers have used trees as discrete point features in processing of this data set. In

contrast, in this thesis the data is processed using scan-matching as the local mapping

module. This data uses a sensor with a much longer range than the indoor scanner

used in the Killian Court data set, and mounted on a vehicle with significantly dif-

ferent dynamics. The maximum number of vehicle poses in a map-frame was set to

15. Using algorithm parameters nearly identical to that used to obtain Figure 5-4,

the output of Atlas is shown in Figure 5-10.
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Figure 5-10: Optimized map of Victoria Park data set using Atlas Scan-Matching.
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Figure 5-11: (a) Atlas adjacency matrix. Dots indicate genesis edges, circles indicate
map matched edges, and crosses indicate unverified edges. (b) Map-frame genesis and
activity.
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Figure 5-12: The histograms of the Kalman filter residuals for line updates on x, y,
and θ parameters, in the Victoria Park data set.
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Figure 5-13: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation in the Victoria Park
data set.
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Figure 5-14: Optimized map of Pennsylvania Mine data set using Atlas Scan-
Matching. (Data made available by S. Thrun (Thrun et al. [55])

5.5.4 Pennsylvania Coal Mine

Here are results for an underground mine data set, made available by S. Thrun of

Carnegie Mellon University. Processing results for this data set using sparse extended

information filters are available in Thrun et al. [55]. This data set is more challenging

because it consists exclusively of laser scanner data, with no odometry. To cope with

the absence of odometry data, a motion model was assumed with the vehicle traveling

forward at a velocity of 17.5 cm/sec (with a large corresponding uncertainty). For

scan-matching, the maximum number of vehicle poses in a map-frame was fifteen.

The output of Atlas is shown in Figure 5-14.
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Figure 5-15: Processing time. 58 minutes of CPU time were required to process the
178 minutes of data. The processing rate is proportional to the number of scans
matched. There is about a two-fold increase in revisited areas as opposed to new
areas since there are saved scans in front of and behind the robot in the former.
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Figure 5-16: (a) Atlas adjacency matrix. Red values indicate genesis edges, green
indicates verified edges, and light blue indicates unverified map-match edges. (b) Map
times.
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Figure 5-17: The histograms of the Kalman filter residuals for line updates on x, y,
and θ parameters, in the Coal Mine data set.
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Figure 5-18: The histograms of the Global map projection optimization residuals for
the x, y, and θ parameters of each map-frame transformation in the Coal Mine data
set.
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Chapter 6

Atlas with Omnidirectional Video

6.1 Introduction

The previous chapters have described the Atlas framework and described its successful

implementation using laser line segments, sonar, and laser scan-match. The goal of

this chapter is to provide a 3D implementation of the Atlas framework using computer

vision. The beauty of Atlas is that it is a general purpose framework in which a

variety of strategies can be employed for local mapping and map-matching. The

potential benefits of large-scale 3D visual mapping are tremendous, but it is still a

very challenging problem because of questions such as the best way to model the

environment, perform data association, and handle lighting changes. Most practical

vision systems use human input for the correspondences, or limit their scope to short

camera excursions where correspondences are easy to determine.

This chapter presents a fairly simple implementation (which may not necessarily

be optimal for local mapping) but demonstrates how the Atlas framework can be

used to enable automated loop closing using computer vision.

The primary mapping sensor used in this implementation is a video camera at-

tached to a parabolic mirror. The mirror provides the camera a 360◦ by 180◦ field
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of view (FOV), and hence the setup is termed an omnicam, since the camera sees in

nearly all directions. Omnidirectional video data offers the advantage of wide field

of view imagery. In comparison to an equivalent motion with a smaller field of view,

significantly longer tracks are obtained. While resolution is reduced, the better cov-

erage provided by the omnidirectional camera results in more accurate ego-motion

estimation and enables matching of local structure estimates to achieve efficient loop

closure.

6.1.1 Atlas requirements

Any implementation of Atlas needs to specify several things: (1) local map repre-

sentation and state estimation method, (2) map-matching technique, and (3) map

relocation for hypothesis initialization. As in Chapter 4 when using sonar only, this

chapter provides only a partial implementation of Atlas in that item (3), map relo-

cation for hypothesis initialization, is not implemented because of the partial observ-

ability of the map with a vision sensor. This prevents old maps for being reused to

explain current sensor measurements. Methods for extending the Atlas framework

using local navigation modules with partially observable features to enable reuse of

maps with out relocation are discussed in Chapter 7.

For this Atlas implementation, the local map representation consists of vanish-

ing points (VPs), 3-D line segments, and 3-D points. Correspondence is achieved

over short temporal intervals using the KLT tracker for points and a novel 3-D line

tracker using dynamic programming based on an ordering constraint. Tracked fea-

tures serve as input to local mapping using bundle adjustment [29]. The approach is

analogous to subsequence concatenation approaches that have appeared in the SFM

literature [23, 62], but with much longer sequences than have been previously em-

ployed. For example, while Fitzgibbon and Zisserman performed bundle adjustment

on local sequences of three images, in this chapter on the order of hundreds of images
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are used in each local map. Map matching is performed using iterative closest feature

(ICF) matching. Taken together, these three components — feature tracking, local

bundle adjustment, and map matching — enable the key contribution of this chapter,

the automated closure of large loops.

6.1.2 Assumptions

The approach assumes that the scene contains sets of stationary parallel lines. This

is a valid assumption in many human-made environments such as indoor offices and

hallways, and outdoor urban environments. The technique also assumes that calibra-

tion information for the omnicam is available. When there are many sets of parallel

lines in the scene and the intrinsic camera calibration is known, then the vanishing

points of the lines can be used to estimate the rotation of the camera. A nice feature

of VPs is that they are invariant to translation, hence enabling the estimation of

rotational errors to be decoupled from the estimation of translational errors.

A critical decision in algorithm development is the choice between batch and re-

cursive methods. An automatic, recursive SFM algorithm must make data association

decisions such as “which measurements correspond to previously mapped features,”

“which measurements correspond to new features,” and “which measurements are

spurious?” The brittleness of most feature detection methods is well-known [36];

erroneous decisions about the origins of measurements can have disastrous conse-

quences. Correspondence errors will lead to filter divergence. This motivates the

development of methods that can make delayed decisions, assessing the consistency

of data points obtained from multiple vantage points.

Batch algorithms for SFM often use techniques from robust statistics, such as

RANSAC, to assess consistency across multiple images in a video sequence, but such

a capability is harder to achieve in a recursive SFM implementation. This implemen-

tation adopts a similar philosophy, using a technique to delay decisions about the
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origins of measurements and to perform consistent initialization of 3-D line and point

features using data from multiple vantage points.

The issues of choice of representation and reliable extraction of features have been

key issues in vision research [38]. Most SFM algorithms have employed points as fea-

tures, extracted from images using techniques such as the SUSAN corner detector [49],

with random sample consensus (RANSAC) used to determine the correspondence of

points across image sequences. Using points as features, various batch SFM algo-

rithms are summarized in Hartley and Zisserman [29] and Faugeras et al. [21].

6.2 Relationship to Previous Work

The development of SFM algorithms capable of running in real-time has been an

important goal in the computer vision research community [29, 21, 57, 51, 14, 8].

Real-time SFM will enable applications such as (1) real-time navigation of mobile

robots in unknown environments, (2) real-time capture of 3-D computer models using

hand-held cameras, and (3) real-time head tracking in extended environments.

.

There is increasing interest in the development of structure from motion (SFM)

algorithms capable of running in real-time [14, 8]. Real-time SFM will enable applica-

tions such as (1) real-time navigation of mobile robots in unknown environments, (2)

real-time capture of 3-D computer models using hand-held cameras, and (3) real-time

head tracking in extended environments.

The set of choices in the development of an SFM algorithm include:

• state estimation (batch vs. recursive);

• choice of representation (geometric vs. appearance-based);

• choice of features (points, edges, lines, curves, etc.);
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• camera geometry (monocular, binocular, trinocular, omnidirectional; affine vs.

projective, calibrated vs. uncalibrated cameras);

• representation and manipulation of uncertainty (Kalman filtering, sum of Gaus-

sians, sequential Monte Carlo methods, etc.).

6.2.1 Feature Geometry

This implementation follows a geometric approach to computer vision. Projective ge-

ometry provides the underpinnings of the methods used to extract structure from the

moving camera viewpoints. A comprehensive introduction to this material is provided

in well known textbooks by Faugeras [20], Faugeras, Luong and Papadopoulo [21] or

Hartley and Zisserman [29].

Appearance based methods provide a potential alternative. The lure of geometric

approaches is that geometry is invariant to lighting changes, whereas appearance

based approaches are not. Appearance based approaches which take advantage of

rich color and texture information over large image areas are better suited for place

recognition problems than geometric approaches. The appearance-based approaches

can better answer “what” whereas geometry-based approaches better answer “where”.

The incorporation of appearance-based techniques would greatly improve the scope

for map matching and recognizing loop closures; however, this topic is left for future

work as discussed in Chapter 7.

The approach in this chapter relies heavily on vanishing points, thus is suited

only to environments with many parallel lines such as urban and indoor scenes. Fu-

ture Atlas implementations can attempt to model more general scenes. Again some

preliminary ideas will be presented in Chapter 7.

The local maps are represented with a collection of vanishing points (VPs), 3D

line segments, and 3D points. The features are extracted from the edges in each video

frame.
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6.2.2 Chapter Summary

The remainder of this chapter will first go over the geometry of features used to cre-

ate the local maps. Subsequently, the feature tracking methods, including the novel

approach to track line segments associated with a vanishing point, are described.

Then the preprocessing Kalman filter, used to track the vanishing points and initially

correct the rotational errors, is presented. The camera pose results from the prepro-

cessing Kalman filter are used with the feature tracking results to initialized the 3D

structure of the lines and points and to provide a starting state for the bundle adjust-

ment phase of the processing. The bundle adjustment is a batch optimization of the

camera path and feature geometry used to minimize the reprojection errors under a

robust Cauchy statistic. The results from the bundle adjustment comprise the Atlas

map-frame. To complete the Atlas implementation requirements, the map-matching

module based upon iterative closest feature matching is presented.

Experimental results are reported for long-duration omnidirectional video se-

quences for indoor, outdoor, and mixed indoor/outdoor environments. The approach

is demonstrated experimentally with results from several long (1, 000+ frames) om-

nidirectional video sequences.

6.3 Single View Geometry

The camera is modeled as a collection of rays which all pass through a single point.

This point is the camera’s center of projection. The rays are modeled by unit vectors

which indicate the direction of the ray from the camera center. However, in projective

geometry, the ray vectors can have an arbitrary scale multiplied to them without

changing the ray. Thus the ray vectors do not need to be normalized as unit vectors.

The camera’s image is modeled as a mapping from ray-vectors [rxryrz]
T to pixel

coordinates (xi, yi). Similarly, the pixel coordinates are mapped to unit vectors with
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the inverse mapping. The most common image mapping model is the linear projective

model where the camera rays r are multiplied by a 3x3 upper triangular intrinsic

calibration matrix A and normalized by the z-coordinate.
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The ray vectors are determined from the pixel coordinates via the inverse mapping.

r ' A−1
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where the ' symbol means that the left and right sides are equal up to an undeter-

mined scale-factor.

6.3.1 Omnicam projection model

The camera used in this implementation uses a parabolic mirror to obtain a field of

view of 180◦. This large field of view is advantageous since objects remain in view for

longer than when using a standard camera, thus leading to more precise navigation.

Unfortunately, the disadvantage of the large field of view is the reduction in angular

resolution. This resolution reduction makes object recognition difficult and affects

the resolution from which maps can be made. The design tradeoff in this thesis is to

sacrifice a bit of map accuracy for precision in navigation.

The ray to pixel mapping model is different since the camera images the reflection

of a parabolic mirror. All the rays are aligned with the focus of the parabola and are

orthographicly projected via a telephoto lens into the camera. (See Figure 6-1). Its

image mapping model is non-linear, and depends on the radius of the mirror at its
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Figure 6-1: The omnicam geometry. The imaged rays all pass through the focus of
the paraboloid, but are reflected orthographicly into the camera’s view

focal point κ and the coordinates of the mirror center (mx,my) in the image.
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Likewise, the inverse mapping identifies the rays for each pixel in the image.

r '













xi −mx

yi −my

κ2−(xi−mx)2−(yi−my)2

2κ













(6.1)

6.3.2 Image Points

The camera’s pose with respect to the scene’s coordinate frame is represented by a

3x3 rotation matrix R and a translation vector t. The observation of a 3D scene point

p from the camera view is constructed by forming the ray from the camera center to

the point, and rotating it into the camera’s coordinate frame.

r ' RT (p− t) (6.2)
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6.3.3 Image Lines

Lines segments in 3D have six DOFs, which can be partitioned into three groups:

two for the direction of the line, two for the perpendicular offset of the line from

the origin, and two for the locations of the endpoints along the line. The infinite line

which contains the segment is then parameterized by the first four degrees of freedom.

A 3D line can also be parameterized by any two points that line on the line.

3D lines project to 2D lines when imaged by the camera. The normal of the plane

containing the 3D line and the camera projection center is used to parameterize the

2D image line. The line parameters l can be determined by taking the cross product

of the rays of two points r1 and r2 that lie on the line.

l ' r1 × r2 (6.3)

When an image ray r lies on an image line l, the dot product of their parameters

is zero.

lT r = 0 (6.4)

This equation reflects the fact that the image ray lies in the plane defined by the

image line.

The ray r that lies at the intersection of two image lines l1 and l2 is formed by

taking the cross product of the line parameters.

r ' l1 × l2 (6.5)

This equation is the dual of Equation 6.3. Geometrically, each line’s plane contains

the intersection ray thus the ray is orthogonal two both plane normals.
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6.3.4 Vanishing Points

The images of parallel 3D lines also have an intersection point in the image. This point

is called the vanishing point or VP. Geometrically, VPs are the common directions of

parallel 3-D lines. The parameters of a vanishing point can be estimated from several

lines identified to be parallel. Each line li provides a constraint for the vanishing

point v using the fact that the dot product of the vanishing point and the line must

be zero.
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(6.6)

A non-zero solution to this system of equations is solved by taking the minimum

eigenvector of the scatter matrix Sl of the line parameters.

Sl =
1

N

N
∑

i=1

lil
T
i (6.7)

v = mineig(Sl) (6.8)

The inverse of the scatter matrix Sl is used to form the uncertainty of the vanishing

point parameters. But first the number of degrees of freedom of the vanishing point

must be addressed. Since the vanishing point is normalized to be a unit vector,

there are only two DOF its parameters. Hence, the variance of the parameters in

the direction of the vanishing point is zero. The deviation of the vanishing point is

modeled to be entirely in the tangent plane of the unit sphere at the vanishing point.

The normal of this plane is parallel to the vanishing point. The plane’s coordinate

system is represented by two basis vectors which are used to project the covariance

of the VP onto the plane.
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A consistent method for determining orthonormal basis vectors for the VP tangent

plane employs the help of a constant vector p that is initialized to be orthogonal to

the initial estimate of the VP.

p =











n([1 0 0]T × v) if v ∼= [0 0 1]T

n([0 0 1]T × v) otherwise

vx = n(v × p)

vy = n(v × vx),

where the function n(v) generates a unit vector in the same direction as v: n(v) :=

v/‖v‖.

We use the 2× 3 matrix

Tv := [vx vy]
T (6.9)

to project 3-D coordinates into the plane normal to the VP.

Thus the covariance of the vanishing point v is computed from its scatter matrix

S by projecting its inverse through the tangent plane basis vectors Tv.

σ2
v =

N

N − 2
vTSv (6.10)

Σv = σ2
vT

T
v

(

TvSTT
v

)−1
Tv (6.11)

where σ2
v is the sample variance of residuals of Equation 6.6.

6.3.5 Line estimation

The duals of Equations 6.6, 6.10, and 6.11 are employed to compute the covariance

of the line parameters estimated from a collection of points. In the dual equations,
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the role of the line replaces the vanishing point, and the points replace the lines.



















pT
1

pT
2

...

pT
n



















l =



















0

0

...

0



















(6.12)

A non-zero solution to this system of equations is solved with a singular value de-

composition of the scatter matrix Sp of the point ray parameters.

Sp =
1

N

N
∑

i=1

pip
T
i (6.13)

l = mineig(Sp) (6.14)

Similarly to Equation 6.11, the covariance of the estimated line l is computed

from its scatter matrix S by projecting its inverse through a set tangent plane basis

vectors Tl. The 2× 3 tangent plane basis vector matrix is computed by picking any

two orthogonal vectors that are orthogonal to the line vector such as two rows of the

Householder matrix defined by the line vector.

σ2
l =

N

N − 2
lTSl

Σl = σ2
l T

T
l

(

TlSTT
l

)−1
Tl

where σ2
l is the sample variance of residuals of Equation 6.12. Figure 6-2 shows the

projection of a 3-D line and its covariance onto the unit sphere.

6.3.6 RANSAC for Vanishing Points

Before the parameter for the vanishing points in each camera view can be estimated,

the lines must be grouped into sets belonging to each VP. Clusters of lines with
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Figure 6-2: Projection of a 3-D line.

a common intersection point are discovered with a random sample and consensus

(RANSAC) based method. The details of RANSAC were first introduced by Bolles

and Fischler [6]; however, the basic idea is summarized here. In RANSAC, a series of

sample models are picked using the minimum number of data points to determine the

parameters of a model. Then each sample model is scored by counting the number of

remaining data points that agree with the model. The top scoring models and their

respective inlier data points determine the segmentation of the data.

The optimal number Nsamples of model samples to pick is computed from the

expected percentage of outliers Poutliers and the desired probability Pdesired of finding
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the correct model.

Nsamples =
log (1− Pdesired)

log
(

1− (1− Poutlier)
M
)

where M is the number of data points used to determine the sampled models. It is

important to note that the number of samples does not depend on the total number

of data points.

RANSAC is applied to finding clusters of parallel image lines by identifying the

vanishing points as the models and the lines as the data points. The models are

picked by sampling random pairs of lines to intersect via Equation 6.5. The potential

clusters are scored by counting the number of lines whose residual using Equation 6.4

is less than a predetermined threshold. (To facilitate the use of a metric threshold,

both the model point and the line are normalized to unit vectors before applying

Equation 6.4, such that the residuals are equal to the cosine of the angle between the

vectors.)

6.3.7 Expectation Maximization for Vanishing Points

The vanishing point estimates and line association from RANSAC can be refined by

an Expectation-Maximization (EM) algorithm in a manner very similar to the work

of Antone and Teller [1]. EM is a good tool for solving mixture distribution problems

where several models are can be used to fit a data set and the data association is

unknown. The process iterates between an Expectation step where, the ownership

probability of each data point to the model and the model’s mixture probabilities

are determined from the current set of model parameters, and a Maximization step

where the model parameters are optimized to maximize their likelihood given the

data mixture weights.

Each vanishing point model vj models the likelihood of each data line li as a
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Gaussian distribution.

P (li | vj) =
1

√

2πσ2
ij

exp

{

−
1

2

(lTi vj)
2

(1− (lTi vj)2)

1

σ2
ij

}

Where the expression
(lTi vj)

2

(1−(lTi vj)2)
is the squared distances of the line from the

vanishing point in the vanishing point’s tangent plane, and σ2
ij is the variance of the

line in the direction of the vanishing point plus the vanishing point’s variance.

σ2
ij = vT

j Σlivj + σ2
v

The vanishing points are modeled with a fixed variance σ2
v that is proportional to the

angular resolution of the camera.

Outlier lines in the data are addressed with the addition of an outlier model

an outlier model. The outlier model behaves as a vanishing point with a uniform

likelihood. The magnitude of the outlier likelihood is set to be the same as that for

a line which is three standard deviations from the VP.

P (li | voutlier) =
1

√

2πσ2
v

exp

{

−
1

2

(3σv)
2

σ2
v

}

The ownership probabilities P (vj | li) are computed using Bayes’ rule.

P (vj | li) =
P (li | vj)P (vj)

∑

j P (li | vj)P (vj)

Where P (vj) are the model mixture probabilities, and the sum is over each vanishing

point model including the outlier model. These mixture probabilities are recomputed

by summing up all the ownership probabilities and renormalizing such that the sum
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of all the mixture probabilities equals one.

P (vj) =

∑

i P (vj | li)
∑

i

∑

j P (vj | li)

The Maximization step re-estimates each vanishing point from the data lines us-

ing the ownership probabilities as weights. The procedure is the same as with Equa-

tions 6.7 and 6.8, except that each line vector is weighted by its ownership probability.

vj = mineig(
∑

i

P (vj | li)
2lil

T
i )

The EM iterations are continued until convergence which is determined when the

change in the model parameters is insignificant. The lines are classified to vanishing

points by picking the number of model with the maximum ownership probability.

6.4 Multiple View Geometry

6.4.1 Point Triangulation

The location of a 3D point can be estimated from two or more observations when

the camera poses are known. A linear method solving for the point parameters by

minimizing geometric error employs the cross product to avoid explicitly solving for

the observation ray scale factors. The constraint from each point’s ray observation is

formed by taking the cross product of the ray with both sides of Equation 6.2.

r× r ' r×RT (p− t) = 0
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A linear system is then constructed by stacking up the constraints from each ray

observation.













...

[ri]× RT
i

...













p =













...

[ri]× RT
i ti

...













where [r]× is the 3 × 3 matrix that forms the cross product when multiplied on the

right by a vector. At least two observations are necessary since the cross product

matrix is only rank 2, and there are 3 degrees of freedom in the point parameters.

6.4.2 Line Triangulation

The triangulation of 3D lines from image line observations at known camera poses

is very similar to point triangulation if the vanishing point of the 3D line is known.

The task simplifies to the triangulation of points in 2D by projecting everything onto

the vanishing point’s tangent plane. Each line observation forms a linear constraint

on the intersection point of the 3D line with the vanishing point tangent plane.
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(6.15)

where c is the 2D vector of the 3D line intersection point in the basis of the tangent

plane.

The perpendicular offset of the 3D line from the origin is formed by multiplying

the intersection point with the tangent basis vectors as TT
vc, and the direction of the

line is the same as the vanishing point v. These two vectors define the triangulated

3D line.

The expected covariance of the line intersection point may be computed from the
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inverse of the left-hand side of Equation 6.15.

Σc '













[

· · · (TvRili) · · ·

]
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(TvRili)
T
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−1

The covariance of the intersection point will be undefined when the left-hand side of

Equation 6.15 is ill-conditioned. This happens when the path of the camera centers

lies in a plane with the 3D line, such as when the camera travels in the direction of

the vanishing point. The system is also ill-conditioned when the 3D line is far from

the cameras relative to the length of the path such that the parallax generated by

the camera motion is insignificant.

6.4.3 Line Segment Matching with Dynamic Programming

Before 3D lines can be triangulated from image lines, the correspondence among image

lines from each view must be made. Lines are tracked across consecutive image frames

using stochastic nearest-neighbor gating [4] augmented by a novel ordering constraint.

When parallel lines are on a single surface, the relative order of the lines is maintained

from subsequent views. Though some lines may be occluded by convexities, their

order can change only if the lines are on different surfaces and the motion is large

with respect to the size of the surfaces. (See Figure 6-3.) Since in practice this is rare,

the constraint exploits the fact to aid in tracking lines whose prediction gates overlap.

Plain nearest neighbor tracking is not robust enough because many typical scenes have

groups of lines that are closer together than the tracking prediction uncertainty.

The lines from the previous view are projected into the current view and then

are matched to the newly extracted image lines. After sorting the lines around their

respective VPs, a modified version of the standard longest common substring algo-

rithm, which is efficiently solved with dynamic programming [13], is utilized to find
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Figure 6-3: The order of the objects cannot change unless they are on different surfaces
and the motion is large.

the best match while maintaining the ordering constraint. The VP can be pictured

as the north pole of a globe (see Figure 6-2), then all the image line segments run

north-south, and they can be lexicographically sorted by the longitude and latitude

of their midpoints. The mean image colors to the left and right of line are used to

further reduce the chance of false matches.

6.4.4 Bundle Adjustment

Bundle adjustment is used to optimize the pose of the camera and scene structure

parameters simultaneously. The procedure forms an high dimensional error vector

to minimize with a nonlinear least squares optimizer. The errors to minimize are

the reprojection errors of the points, lines, and vanishing points. The methods for

performing the nonlinear least square are beyond the scope of this thesis. The reader

is referred to Fletcher [24], or Triggs, McLauchlan, Hartley and Fitzgibbon [58], for

a more detailed presentation of sparse large scale optimization methods.
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εrij
= rij × n

(

RT
j (pi − tj)

)

where i indexes the points, and j indexes the camera poses, and n(r) is a function

which normalized vectors to have unit length. The cross product ensures that the

observation has only two degrees of freedom and is invariant to the length of the ray

vectors.

The line reprojection error is the cross product of the measured image line with

the image line between the reprojected endpoints L0, L1 of the 3D line segment.

εlij = lij × n
(

RT
j (L0i − tj)×RT

j (L1i − tj)
)

The error vector is also augmented with the motion model from odometry, which

is necessary to determine the otherwise unconstrained global scale-factor. In addi-

tion, the odometry error terms help condition the camera poses for view with poor

observations of the scene geometry.

εdj
=







σdR

(

dR0j − d
(

RT
j−1Rj

))

σdt

(

dt0j −RT
j−1 (tj − tj−1)

)







where dR is a 3-vector such that R = edR, dR0j, dt0j , represent the relative motion

from view j − 1 to j as measured by the odometry, and the scale-factors σdR and σdt

weight the odometry errors.

Special attention must be placed on properly weighting the reprojection errors

with the odometry errors. This is analogous to choosing process and measurement

noise covariances when tuning a Kalman Filter.

Outliers in the data are addressed by applying a Lorentzian weight to each error

164



term. This is the same procedure as in Section 5.2.2.

εtotal =













ρ′
(

εrij

)

ρ′
(

εlij

)

ρ′
(

εdj

)













where ρ′(x) is the square root of Lorentzian weighting function.

ρ′(x) =
2x

x2 + r̄2

where r̄ represents the soft outlier threshold.

The optimization parameters are defined as little updates to the initial camera

poses and structure parameters. The optimization routines work best provided with

a non-redundant parameterization rather than using extra constraints and redundant

parameterizations.

The rotation are modeled by the initial rotation plus a small update dRj. The

vanishing point is modeled by the initial vanishing point plus a small deviation in

the tangent plane. The 3D line endpoints are modeled by the first end point plus an

update in the tangent plane and the second end point from the updated first in the

direction of the vanishing point.

Rj = R0je
dRj

tj = t0j + dtj

pi = p0i + dpi

vi = n(v0i + TT
vdvi)

L0i = L00i + TT
vdci

L1i = L0i + v

(6.16)

This implementation used the function lsqnonlin.m for large scale sparse prob-
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Figure 6-4: Data flow diagram for omnidirectional video processing.

lems in the Matlab optimization toolbox. The lsqnonlin.m routine uses the sparsity

pattern of the Jacobian matrix to optimized the finite differencing when computing

the Jacobian. The covariance of the parameters can be computed from the Hessian

of the final optimization iteration, which is returned by the function.

6.5 Local Mapping Data flow

The previous sections have setup the important methods and algorithms used in

the Atlas omnicam mapping module. This section ties together all the pieces by

describing the data flow from the video sequence to the local map.

6.5.1 Preprocessing

Initially each video frame is preprocessed to extract line segments from edge contours,

and estimate vanishing points from the extracted line segments. The edge contours

are extracted from the zero crossings of a Laplacian of a Gaussian (LoG) filter on

the luminance channel of the image. To compute the LoG image, each video frame
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is convolved with a 5× 5 kernel FLoG.

FLoG =
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The edge contours are determined to sub-pixel accuracy by interpolating detected

zero crossings of the LoG image between two pixels. For example, when a zero

crossing is detected between pixels (i, j) and (i + 1, j) with the LoG values of α and

β, respectively, and α ·β = −1, the zero crossing is interpolated to lie at (i+ |α|
|α|+|β|

, j).

The line segment extractor transforms the pixels from each edge contour into rays

with Equation 6.1 and then recursively splits each contour into straight line segments.

The extractor uses the same line splitting procedure as the laser line segmentation

described in Section 3.2.1. However, instead of fitting lines to 2D points, the lines are

estimated from 3D unit vectors using Equation 6.14.

The mean colors from each side of each extracted line are sampled from the image

to aid in tracking correspondences. The sign of the brightness differential across the

line is also used to determine the sign of each line parameter. The method employs

the convention that the line parameter vector points in the direction of the darker

side.

The next stage of preprocessing computes vanishing point directions in each frame

using the extracted line segments. As described in Section 6.3.6, a RANSAC-based

vanishing point extractor determines the number and initial locations of line intersec-

tion clusters in the image. An EM-based algorithm subsequently refines the vanishing

point clusters and line classification. (See Section 6.3.7.)
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6.5.2 Feature Tracking

The Atlas omnicam mapping module utilizes an intermediate phase to track feature

correspondences from video frame to frame. The three types of features used, points,

lines and vanishing points, are tracked using different methods.

A point tracker based on the Kanade-Lucas-Tomasi Feature Tracker [45], extracts

image regions of large edge intensity, (by maximizing the minimum eigenvalue of the

Hessian of the image derivatives), and tracks the regions in subsequent frames. An

image mask prevents the selection of points and tracking on objects fixed within the

camera view. The pixel coordinates for each point track are converted to ray vectors

using Equation 6.1.

A simple Kalman Filter is used to track the vanishing point estimates from frame

to frame. The vanishing point Kalman filter also corrects for the rotational errors in

the input odometry measurements. The Kalman filter maintains the current rotation

estimate of the camera and estimates of the vanishing points. Vanishing points in the

current frame are matched using nearest neighbor gating to the vanishing points in the

Kalman state vector. New vanishing points are added to the filter only when a track

of intersection clusters from several frames proves to be invariant to the translation

of the robot. This procedure prevents non vanishing point intersection clusters from

being used.

Lines are tracked from frame to frame using their association with a vanishing

point from the vanishing point Kalman filter. The lines from subsequent frames are

corresponded using the technique described in Section 6.4.3.

6.5.3 Bundle Adjustment

The bundle adjustment is the core of the omnicam local mapping module. The

preprocessing steps have extracted point, line, and vanishing point correspondences

from the video, as well as corrected the rotational errors in the odometry-based camera
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poses. The bundle adjustment will compute the 3D point and line parameters, and

refine the camera rotation as well as translation estimates.

A local map-frame consists of a fixed number of sequential video frames to be

bundle adjusted in a batch process. The initial estimation of the 3D point and line

parameters are computed using the rotationally corrected odometry-based path of the

camera and the procedures outlined in Sections 6.4.1 and 6.4.2. The initial structure,

camera trajectory, and the correspondences from the preprocessing stages provide the

inputs to the bundle adjustment routine.

The coordinate frame freedom in the bundle adjustment is fixed by transforming

the results such that the first camera pose in the sequence at the origin. Subsequent

sequences of video frames are grouped for bundle adjustment in separate map-frames.

The sequences overlap one another by about 50%. The exact amount of overlap

is not a critical design decision; though there is a tradeoff between having a small

overlap and little redundancy, and having a large overlap and better chances for many

correspondences during later map matching. The Atlas genesis edges are formed by

relating the camera poses in the overlapped trajectory regions.

6.6 Map Matching

The Atlas omnicam map match module matches the vanishing points to determine

the rotational alignment, then it uses an iterative closest feature (ICF) to determine

the translational component of the maps’ alignment. The ICF procedure is very

similar to the ICP procedure used in the Atlas scan-matching map match module

from Section 5.4. The main differences are that this version uses both points and

lines, there are no surface normals for the points, and transformation updates a 3D

translational correction instead of rotation and translation in 2D.
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6.7 Experimental Results

6.7.1 Hardware Setup

The omnidirectional video camera used in the experiments is a Canon Optura Digital

Video cam-corder with two mirrors. The parabolic main mirror is mounted to the

side of the camera, and a flat secondary mirror folds the optical path such that the

cam-corder body doesn’t block most of the field of view. The secondary mirror is

supported by a thin aluminum arm which obstructs a thin region of the image. See

Figure 6-5 for a picture of the camera and mirror setup, and Figure 6-6 for a sample

image taken with the “omnicam”.

Two calibration marks are placed near the mirror to aid in the calibration of the

projection function. The thin aluminum arm of the omnicam vibrates a bit during

camera motion such that the image of the mirror shifts a few pixels between frames.

The system tracks the dots, computes their centers, and adjusts the mirror center

and radius to maintain proper alignment.

The resolution of the camera is determined by the resolution of DV which is

720x480; hence the maximal radius of the mirror image is just under 480 pixels and

the average view arc covered by one pixel is 0.375◦. A typical 30◦ FOV camera has

a pixel arc of 0.0625◦; thus it is important to calibrate the mirror center and radius

accurately.

The omnicam is mounted on either the B21 robot described in Chapter 3, or on

a bicycle instrumented with a wheel odometer and steer column sensor. The audio

channel of the DV cam-corder is used to record synchronization pulses from the

odometry hardware. The synchronization pulses is a short 10 byte message sampled

directly from a RS232 serial waveform at 9600 baud (attenuated to audio voltages).

The audio waveform is sampled at 48000 Hz which corresponds to about 5 samples

per bit. The 10 bytes consist of the header 0x55, 4-byte integer Unix time, 4-byte
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Figure 6-5: The “Omnicam” hardware setup mounted on a b21 robot.

Table 6.1: Image sequences for experiments.
Sequence name duration number of frames total path length

Lounge 3’00” 5,400 29.9 meters

Library 9’42” 17,462 75 meters

Atrium 9’50” 17,684 100 meters

Omnibike 2’58” 5,348 94 meters

integer elapsed navigation time in milliseconds, and a checksum byte. The pulse is

repeated at one second intervals.

Experimental results demonstrate the Atlas omni-video implementation on three

different robot-mounted omnidirectional video sequences and one omnibike sequence,

the first and last consisting of 5,000 frames, and the second and third consisting of

17,000 frames each.

6.7.2 Lounge Sequence

The first image sequence contains two short loops in a lounge area of our laboratory,

with a path length of approximately 30 meters. Figures 6-7 and 6-8 show the re-

projected errors for points and 3D lines for local bundle adjustment for one of the

submaps (the fifth subsequence). Twenty-six submaps were created. Figure 6-9 shows
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Figure 6-6: A sample omnicam image from the Atrium experiment. The dots to
either the side of the mirror are used to track and compensate for motion of the
image during jolts which vibrate the mirror arm.

the map match scores, demonstrating successful automated loop closure. The score

is simply the number of matched points between maps. The threshold used for a

successful match is 200 points. Figures 6-10 and 6-11 show the estimated camera tra-

jectory and scene structure for all maps. For visualization of the scene structure, the

algorithm performs a Delaunay triangulation in the view of the camera pose in the

middle of the sequence. Delaunay triangles with perimeter greater than a threshold

(typically, 1 meter) are not rendered. Figures 6-12 and 6-13 show the estimated cam-

era trajectories. Note that the recovered path closes horizontal and vertical motion

components.

6.7.3 Library Sequence

In the second experiment, the robot executed four loops around several bookshelves

in a library, with a total path length of approximately 75 meters. Thirty-two submaps

were created. Figure 6-15 shows the map match scores. The path consisted of one

large loop and one smaller loop, and each loop was traversed twice. Figures 6-16

and 6-17 show the estimated camera trajectory and scene structure for all maps.
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Figures 6-18 shows the estimated camera trajectories.

6.7.4 Atrium Sequence

The third experiment was performed on a non-planar path in an atrium between two

buildings. This experiment demonstrates closure of a single large, non-planar loop

with a total path length of approximately 100 meters. The vehicle traveled down

a long ramp at the start of the experiment and returned by traveling up a steeper

ramp at the end of the run. Thirty-one submaps were created. Figure 6-21 shows the

map match scores. Figures 6-22 and 6-23 show the estimated camera trajectory and

scene structure for all maps. Figures 6-24 shows a top view of the estimated camera

trajectory, along with the path from dead-reckoning. Figure 6-25 shows a side view

of the path, illustrating the motion of the vehicle on the ramps.
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Figure 6-7: Lounge sequence point reprojection errors (in degrees) for the fifth local
map. The x-axis indicates frame number, and the y axis indicates track ID.

Figure 6-8: Lounge sequence line reprojection errors for the fifth local map. The
x-axis indicates frame number, and the y axis indicates track ID.
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Figure 6-9: Lounge sequence: Map match scores. Values of zero indicate that a given
pair of maps were not matched, because they were not estimated to be near enough
to one another, based on concatenation of submap connection graph transformations
and odometry.
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Figure 6-10: Lounge sequence: plan view of all submaps. Colors for Delaunay trian-
gles correspond to structure estimated in different submaps.

Figure 6-11: Lounge sequence: oblique view.
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Figure 6-12: Lounge sequence: plan view of total path. Two plots are shown, the
solid blue line shows the trajectory estimated only from VPs and odometry. The
multi-colored plot shows the camera poses estimated from bundle adjustment and
map frame alignment, with a different color for each submap.

Figure 6-13: Lounge sequence: oblique view of total path.
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(a)

(b)

Figure 6-14: Library sequence (a) point and (b) line reprojection error for the fifth
local map (in degrees). The x-axis indicates frame number, and the y axis indicates
track ID.
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Figure 6-15: Library sequence map match scores.
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Figure 6-16: Library sequence: plan view of all submaps. Colors for Delaunay tri-
angles correspond to structure estimated in different submaps. The structure of two
library bookshelves enclosed by the vehicle trajectory is visible.

Figure 6-17: Library sequence: oblique view of all submaps.
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Figure 6-18: Library sequence: plan view of total path. Two plots are shown, the
solid blue line shows the trajectory estimated only from VPs and odometry and the
multi-colored plot shows the camera poses estimated from bundle adjustment and
map frame alignment, with a different color for each submap.

Figure 6-19: Library sequence: oblique view of total path.
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(a)

(b)

Figure 6-20: Atrium sequence (a) point and (b) line) reprojection error for the fifth
local map (in degrees). The x-axis indicates frame number, and the y axis indicates
track ID.
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Figure 6-21: Atrium sequence map match scores.
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Figure 6-22: Atrium sequence: plan view of all submaps. Colors for Delaunay trian-
gles correspond to structure estimated in different submaps. The estimated camera
trajectory after fusion is shown as a heavy black line.

Figure 6-23: Atrium sequence: oblique view of all submaps.
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Figure 6-24: Atrium sequence: plan view of total path. Three plots are shown, the
solid blue line shows the dead-reckoned camera trajectory estimated from odometry.
The multi-colored plot shows the camera poses estimated from bundle adjustment
and the heavy black line shows the trajectory estimate after map fusion.

Figure 6-25: Atrium sequence: profile view of total path. (Note the unequal axis
scales.)
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6.7.5 Tech Square with Omnibike

Figure 6-26: Detail view of omnicam mounted on bicycle.
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Figure 6-27: Omnibike sequence point reprojection errors (in degrees) for the fifth
local map. The x-axis indicates frame number, and the y axis indicates track ID.
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Figure 6-28: Omnibike sequence line reprojection errors for the fifth local map.
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Figure 6-29: Omnibike sequence: Map match scores. Values of zero indicate that a
given pair of maps were not matched, because they were not estimated to be near
enough to one another, based on concatenation of submap connection graph trans-
formations and odometry.
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Figure 6-30: Omnibike sequence: oblique view.

Figure 6-31: Omnibike sequence: plan view of all submaps, manually overlaid on an
aerial photograph. Colors correspond to structure estimated in different submaps.
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Figure 6-32: Omnibike sequence: plan view of total path. Two plots are shown, the
solid blue line shows the trajectory estimated only from VPs and odometry. The
multi-colored plot shows the camera poses estimated from bundle adjustment and
map frame alignment, with a different color for each submap.
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Figure 6-33: Omnibike sequence: oblique view of total path.
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Chapter 7

Conclusion

This thesis has presented Atlas, a general framework for efficient large-scale mapping

and navigation. The framework can autonomously handle closing multiple nested

loops in large cyclic environments using a variety of sensors and mapping strate-

gies. The performance of the approach has been demonstrated using laser scanner,

ultrasonic range and omnidirectional video data. Results have been presented on

numerous data sets for feature-based local SLAM (Chapters 3 and 4), scan-matching

(Chapter 5), and omni-directional video bundle adjustment (Chapter 6). This chapter

describes the failure modes of Atlas and makes recommendations for future research.

7.1 Summary

The approach combines the advantages of topological and metrical representations.

The representation is a graph of coordinate frames. Each vertex in the graph repre-

sents a local coordinate frame, and each edge represents the transformation between

adjacent local coordinate frames. In each local coordinate frame, the method builds

a map that captures the local environment and the current robot pose along with the

uncertainties of each. Each map’s uncertainties are modeled with respect to its own

local frame. Probabilities of entities in relation to arbitrary map-frames are generated
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by following a path formed by the edges between adjacent map-frames, using Dijk-

stra’s shortest path algorithm. Loop-closing is achieved via an efficient map matching

algorithm.

Modularity is an important characteristic of the Atlas framework, Successful re-

sults have been shown for a diverse range of sensor types and operating environments,

including building corridors, an underground mine, an outdoor park, and an urban

square. A diverse range of local mapping strategies have been utilized, including

feature-based Kalman filtering, non-feature-based scan matching, and bundle adjust-

ment.

Another key contribution of Atlas is its capability to provide efficient, real-time

operation in large environment comprised of multiple nested loops. As described in

Section 2.5, the method achieves a growth of complexity of either O(n log n) when

using Dijkstra’s shortest path algorithm to select candidates for map-matching, or

O(n) when breadth-first search is used for this task. Amortization of this computation

over the time spent in each submap results in extremely efficient performance. An off-

line global alignment step is utilized to generate a single global map for visualization

purposes at the end of a mission. This method operates extremely quickly (a few

seconds of computation time) for the size of environments considered in this thesis.

7.1.1 Implementation Comparison

The Killian Court data set, first described in Section 3.5.1, will be used to compare

the Atlas implementations from Chapters 3, 4, and 5. The most accurate results are

obtained from the global optimized map projection of the scan-match implementation,

thus the scan-match optimized robot pose trajectory is used as a reference when

comparing the trajectories from other implementations.

The trajectories for each implementation are plotted in Figure 7-1. Figure 7-2

shows the time plots of the global pose errors, and Table 7.1 lists the standard devia-
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Table 7.1: Standard deviation of global robot pose errors.
x (m) y (m) θ (deg)

Scan-match 0.00 0.00 0.00

Laser Lines 3.54 6.43 2.53

Sonar Features 2.60 4.95 3.26

Scan-match Dijkstra 2.35 1.87 2.87

Laser Lines Dikstra 4.94 8.88 4.28

Sonar Dikstra 9.73 3.68 7.98

Odometry only 42.57 68.18 17.29

tions of the errors for each parameter. As expected, the global optimized projections

have less errors then their respective Dijkstra projections. The discontinuities in

Dijkstra projection errors are a result of the loops being split at that point.

7.1.2 Connectivity Metric

The topological quality of the resulting Atlas graphs from each implementation can

be measured by a novel connectivity metric. The metric compares the adjacency of

the robot positions from each implementation’s Atlas graph with the robot adjacency

computed from the best projected trajectory — in this case, the scan-match optimized

map projection’s trajectory.

Two robot poses are considered adjacent if their parent map-frames are adja-

cent and if the translational distance between the poses is less than a threshold. A

threshold of 5 meters is used in this thesis. The robot adjacency matrix A is defined

as:

A(ti, tj) = Am(m(ti),m(tj)) ∩
(

‖X(ti)− T
m(tj)

m(ti)
⊕X(tj)‖ < dthreshold

)

where Am is the map-frame adjacency matrix, m(t) is the map-frame id at time t,

T
mj
mi is the coordinate transform between map mi and mj, and X(t) is the robot pose

w.r.t. the map-frame.

The best adjacency Abest is computed from the global optimized scan-match tra-
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Figure 7-1: A comparison among the robot pose trajectories of the Killian Court data
with different implementations and projections.
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Figure 7-2: The robot pose errors of the Killian Court data set using the scan-matched
optimized projection as a reference.
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Table 7.2: Topological Connectivity Performance.
Implementation C using first order neighbors C using second order neighbors

Scan-match 0.8982 0.9897

Laser Lines 0.7277 0.9461

Sonar Features 0.6664 0.7845

jectory, ignoring its map-frame adjacency, which is displayed in Figure 7-3. To mea-

sure the loop closing performance, robot poses which are adjacent in time are not

considered.

The connectivity metric is computed as the sum of robot poses that are adjacent

in the both the Atlas graph and the best projection, divided by the sum of adjacent

robots in the best projection.

C =
‖A ∩Abest‖

‖Abest‖

Table 7.2 catalogs the performance for each Atlas implementation. None of the

implementation have a perfect connectivity score because they do not close all loops

immediately. Some time is necessary for the system to recognize and verify a loop

closure. When second order map-frame adjacencies are considered, however, the con-

nectivity very closely approaches the optimal for the scan-match and laser lines imple-

mentations. The lower connectivity performance for sonar implementation indicates

that its map-matching is not as robust.

7.2 Failure modes

There are three primary categories of Atlas failure modes: missed mapping, erroneous

data association, and unsuccessful relocalization.

The first type of failure mode for Atlas is missed mapping due to reaching com-

putational limits. There are two cases when the computational limits have been

reached: either the open-loop uncertainty is too large such that there are too many
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Figure 7-3: The best adjacency of robot poses for the Killian court data set. Robot
poses adjacent in time, also indicated in red, are not used when computing the con-
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map-match candidates to be evaluated, or the length of the open loop is too large

such that the appropriate map-match candidates are not placed on the candidate list

in time. Since the number of map match candidates is proportional to the open loop

uncertainty, when the open-loop uncertainty grows too large, there will be too many

map match candidates to evaluate during the time spent in the dominant map. The

second case occurs when the dominant map changes before the uncertainty projection

computation runs to completion. Since the purpose of the map uncertainty projec-

tion computation is to find potential candidates for map-matching, some map-match

candidates will be missed. The effect of both these cases is the failure to recogniz-

ing loop closure. With amortization and proper planning of the mapping trajectory,

the open-loop uncertainty and the loop length are managed to maintain real-time

performance while not missing any mapping events.

The second type of failure mode involves incorrect mapping due to data association

errors. These errors can occur at multiple levels including low-level data association

errors within the local SLAM module, and high-level data association errors when

map matching. Local SLAM errors include feature doubling due to missed data

associations and incorrect state and inconsistent error estimates due to incorrect data

association and poor measurement models. Most local errors will simply make the

local maps less accurate, but when the errors are severe enough, they can also affect

the operation of the Atlas framework. The local errors can prevent map matching

from recognizing previously mapped regions, and the inconsistent error estimates

can prevent the framework from finding the proper candidates for map matching.

High-level errors most likely occur when there are large repetitions of structure in

the environment. The cycle verification procedure described in Section 2.2.4 greatly

reduces the likelihood of such error by increasing the effective region of map overlap

used to assure correct matching; however, there can still be structure repetitions at

scales larger then the procedure can handle. A potential mitigation for this failure
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mode requires that the region covered by the cycle verification be enlarged with

respect to the open loop uncertainty, but then there will be a risk of not maintaining

real-time performance.

Finally, the third mode of failure (related to missed mapping) consists of excessive

genesis due to the inability to relocalize into previous map-frames. This is especially

difficult for partially observable sensor modalities, such as sonar and vision. The

implementation of relocalization for sonar and vision is an item for future work (de-

scribed below). Relocalization failure can also occur with fully observable modalities,

such as laser sensing, in environments such as long featureless corridors that do not

fully constrain the robot position in all degrees of freedom.

7.3 Future Work

The key important issues for future work include relocation with partial observability,

on-line map fusion, global state estimation, improved Atlas module implementations,

multi-robot mapping, and exploration and long-term autonomy.

7.3.1 Relocation with partial observability

As described above, relocalization is difficulty when using sensors that provide only

partial constraints. Whereas laser scanners provide accurate range and angle mea-

surements, sonar only provides accurate range measurements and vision only provides

accurate angle measurements. The pose of the robot is not constrained by a single

viewpoint. To address this, it is necessary to relocalize a short sequence of robot

positions. Challenges in realize this include efficiently finding associations for sensor

measurements across maps and consistently exploiting odometry information.
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7.3.2 On-line map fusion

For many applications, it would be desirable to fuse the structure in overlapping

submaps to reduce redundancy and to improve local state estimates by combin-

ing measurements. Examples of map fusion in the recent SLAM literature include

Tardós et al. [50] and Williams et al. [61]. Again, one of the key challenges in map

fusion is data association. It would be desirable to fuse maps in such a manner as

to not increase the capacity of local maps. This will require partial fusion and map

clean-up (discarding unnecessary states). An implementation of map fusion will need

to address the issue of multiple features which may have used the same measurements.

Currently, with the conservative approach to map matching and loop closure

adopted in Atlas, the algorithm can generate multiple overlapping submaps for the

same region of the environment. For example, in Figure 3-18, the algorithm produced

twelve map-frames to cover the area of the “ten loops” experiment. Using a technique

such as sequential map joining [50], these twelve map-frames could be combined to

form a single map. For larger scale environments, such as the Killian Court data

set, the combination of many map-frames into a single map would likely fail due to

linearization errors.

Map fusion may be used to side-step the problem of relocalization with partial

observability all together. The system would continually generate new maps, use map

matching to identify revisited areas, and employ map fusion to combine the new and

old maps; thus preventing the graph from growing in density.

7.3.3 Global state estimation

This thesis has not addressed the issue of achieving global convergence for repeated

traversals of the environment. The estimate of the transformations between maps

can be improved each time a link is traversed. For a short time during transition,

an estimate of the robot exists in two maps, which can constrain the inter-map co-
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ordinate transformation. Maintaining consistency in performing this update is not

straightforward because the two robot pose estimates are not independent. Covari-

ance Intersection [59] is a potentially useful technique for fusion state estimates when

their correlation is unknown.

For a linear Gaussian SLAM problem with known data association, a submap

approach such as Atlas will yield state estimation errors that are larger than the

full O(n2) solution. However, Newman and Leonard have shown that if the local

origins of submaps are defined by map features shared between adjacent submaps,

then one can achieve asymptotic convergence to a solution that is effectively the same

as the full solution, for situations when the robot can make repeated traversals of the

environment [32].

An interesting idea for future work is to employ Markov Chain Monte Carlo state

estimation techniques [18] for the concatenation of approximate coordinate transfor-

mations in the Atlas map projection procedure. Particle filters have the potential to

represent the errors of compounding nonlinear coordinate transformation.

7.3.4 Improved implementation of Atlas modules

For example, the loop-closing performance of Atlas using omnidirectional video could

be improved by employing appearance as well as geometric information in the map

matching and local mapping module. The implementation results described above

in Chapter 6 used points, lines, and vanishing points as features for geometric state

estimation and map matching. A promising idea to utilize appearance information

is to employ the scale invariant feature transformation approach of Se et al. [44]. A

difficulty in using appearance information involves properly addressing changes in

lighting and surface reflections. A goal for future research is to integrate geometric

and appearance-based information in variable lighting conditions for better object

modeling and more reliable data association.
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An additional goal is to achieve realistic three-dimensional visual mapping by

expanding the model representation to include surfaces and textures.

7.3.5 Multi-robot Mapping

The framework can also be expanded to incorporate strategies for mapping and lo-

calization with multiple cooperative robots. Each robot would build and maintain a

network of local maps, and when the robots meet, they can add edges to link their

networks together. In a cooperative mapping scenario, the issue of reusing measure-

ments must be addressed to correctly account for their correlations. Another issue is

effectively manage the communications bandwidth for multiple mobile robots to per-

form cooperative mapping. The submap graph structure of Atlas lends itself to this

task because information is localized. Rather than exchanging entire maps, multiple

agents can share graph neighborhoods.

7.3.6 Exploration and Long-term Autonomy

Many applications exists which would benefit by incorporating the Atlas framework

to enable efficient scaling in larger environments. Environments of interest include

underwater, underground, service applications, space exploration, etc. To achieve

long-term, large-scale autonomous mapping and navigation for these applications, it

is necessary to couple Atlas with a higher-level process for exploration and path plan-

ning. In related work, Newman et al. [42] have integrated feature-based exploration

with SLAM to enable “hands-off” autonomous mapping. It would be desirable for

combine autonomous exploration with the Atlas framework, to enable autonomous

path execution of loop closure.
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[36] T. Lozano-Pérez. Foreword. In I. J. Cox and G. T. Wilfong, editors, Autonomous
Robot Vehicles. Springer-Verlag, 1989.

[37] F. Lu and E. Milios. Globally consistent range scan alignment for environment map-
ping, 1997.

[38] D. Marr. Vision. New York: W. H. Freeman and Co., 1982.

[39] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution
to the simultaneous localization and mapping problem. In Proceedings of the AAAI
National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI.

[40] H. P. Moravec and D. W. Cho. A Bayesian method for certainty grids. In AAAI Spring
Symposium on Robot Navigation, pages 57–60, 1989.

[41] E. M. Nebot and H. Durrant-Whyte. A high integrity navigation architecture for
outdoor autonomous vehicles. Robotics and Autonomous Systems, 26:81–97, 1999.

[42] P. Newman, , M. Bosse, and J. Leonard. Autonomous feature-based exploration. In
Proc. IEEE Int. Conf. Robotics and Automation, 2003.

[43] H. Schmidt. GOATS-98 — AUV network sonar concepts for shallow water mine coun-
termeasures. Technical Report SACLANTCEN SR-302, SACLANT Undersea Research
Centre, 1998.

[44] S. Se, D. G. Lowe, and J. Little. Mobile robot localization and mapping with uncer-
tainty using scale-invariant visual landmarks. Int. J. Robotics Research, 21(8):735–758,
2002.

[45] J. Shi and C. Tomasi. Good features to track. In cvpr, pages 593–600, 1994.

[46] A. C. Shultz and W. Adams. Continuous localization using evidence grids. In Proc.
IEEE Int. Conf. Robotics and Automation, pages 2833–2839, 1998.

205



[47] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial relation-
ships. In 4th International Symposium on Robotics Research. MIT Press, 1987.

[48] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–193.
Springer-Verlag, 1990.

[49] S. M. Smith and J. M. Brady. Susan – a new approach to low level image processing.
Int. J. Computer Vision, 23(1):45–78, May 1997.

[50] J.D. Tardós, J. Neira, P.M. Newman, and J.J. Leonard. Robust mapping and localiza-
tion in indoor environments using sonar data. Int. J. Robotics Research, 21(4):311–330,
April 2002.

[51] C. J. Taylor and D. J. Kriegman. Structure and motion from line segments in multiple
images. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(11):1021–1032,
November 1995.

[52] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and N. Master.
Calibrated, registered images of an extended urban area. In Computer Vision and
Pattern Recognition, volume 1, pages 813–820, Kauai, December 2001.

[53] S. Thrun. A probilistic online mapping algorithm for teams of mobile robots. Int. J.
Robotics Research, 20(5):335–363, May 2001.

[54] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for
mobile robots. Technical Report CMU-CS-00-125, Carnegie Mellon University, 2000.

[55] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C. Baker,
Z. Omohundro, S. Thayer, and W. Whittaker. A system for volumetric robotic mapping
of abandoned mines. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2003.

[56] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and Ng A.Y. Simultaneous
mapping and localization with sparse extended information filters. In Proceedings of the
Fifth International Workshop on Algorithmic Foundations of Robotics, Nice, France,
2002. Forthcoming.

[57] B. Triggs, A. Zisserman, and R. Szeliski, editors. Vision algorithms, theory and prac-
tice: International Workshop on Vision. Springer-Verlag, 1999.

[58] W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment for
structure from motion, 2000.

[59] J. K. Uhlmann. General Data Fusion for Estimates with Unknown Cross Covariances.
In Proceedings of the SPIE AeroSense Conference, Orlando, Florida, 1996.

[60] C.-C. Wang, C. Thorpe, and S. Thrun. Online simultaneous localization and mapping
with detection and tracking of moving objects: Theory and results from a ground
vehicle in crowded urban areas. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2003.

206



[61] S.B Williams, G. Dissanayake, and H. Durrant-Whyte. An efficient approach to the
simultaneous localisation and mapping problem. In Proc. IEEE Int. Conf. Robotics
and Automation, pages 406–411, 2002.

[62] Z. Zhang and Y. Shan. Incremental motion estimation through local bundle adjust-
ment. Technical Report MSR-TR-01-54, Microsoft Research, 2001.

207


