
Unstructured Lumigraph Rendering

Chris Buehler Michael Bosse Leonard McMillan Steven Gortler Michael Cohen
MIT Laboratory for Computer Science Harvard University Microsoft Research

Abstract

We describe an image based rendering approach that generalizes
many current image based rendering algorithms, including light
field rendering and view-dependent texture mapping. In particular,
it allows for lumigraph-style rendering from a set of input cameras
in arbitrary configurations (i.e., not restricted to a plane or to any
specific manifold). In the case of regular and planar input camera
positions, our algorithm reduces to a typical lumigraph approach.
When presented with fewer cameras and good approximate geom-
etry, our algorithm behaves like view-dependent texture mapping.
The algorithm achieves this flexibility because it is designed to meet
a set of specific goals that we describe. We demonstrate this flexi-
bility with a variety of examples.
Keyword Image-Based Rendering

1 Introduction

Image-based rendering (IBR) has become a popular alternative to
traditional three-dimensional graphics. Two effective IBR meth-
ods are view-dependent texture mapping (VDTM) [3] and the light
field/lumigraph [10, 5] approaches. The light field and VDTM algo-
rithms are in many ways quite different in their assumptions and in-
put. Light field rendering requires a large collection of images from
cameras whose centers lie on a regularly sampled two-dimensional
patch, but it makes few if any assumptions about the geometry of
the scene. In contrast, VDTM assumes a relatively accurate ge-
ometric model, but requires only a small number of images from
input cameras that can be in general positions. These images are
then “projected” onto the geometry for rendering.

We suggest that, at their core, these two approaches are quite
similar. Both are methods for interpolating color values for a de-
sired ray as some combination of input rays. In VDTM this inter-
polation is performed using a geometric model to determine which
pixel from each input image “corresponds” to the desired ray in the
output image. Of these corresponding rays, those that are closest in
angle to the desired ray are weighted to make the greatest contribu-
tion to the interpolated result.

Light field rendering can be similarly interpreted. For each de-
sired ray (s, t, u, v), one searches the image database for rays that
intersect near some (u, v) point on a “focal plane” and have a simi-
lar angle to the desired ray, as measured by the ray’s intersection on
the “camera plane” (s, t). In a depth-corrected lumigraph, the focal
plane is effectively replaced with an approximate geometric model,

making this approach even more similar to view dependent texture
mapping.

Given these related IBR approaches, we attempt to address the
following questions: Is there a generalized rendering framework
that spans all of these image-based rendering algorithms, having
VDTM and lumigraph/light fields as extremes? Might such an al-
gorithm adapt well to various numbers of input images from cam-
eras in general configurations while also permitting various levels
of geometric accuracy?

In this paper we approach the problem by suggesting a set of
goals that any image based rendering algorithm should have. We
find that no previous IBR algorithm simultaneously satisfies all of
these goals. Therefore these algorithms behave quite well under
appropriate assumptions on their input, but may produce unneces-
sarily poor renderings when these assumptions are violated.

We then describe an algorithm for “unstructured lumigraph ren-
dering” (ULR), that generalizes both lumigraph and VDTM render-
ing. Our algorithm is designed specifically with the stated goals in
mind. As a result, our renderer behaves well with a wide variety
of inputs. These include source cameras that are not on a com-
mon plane, such as source images taken by moving forward into a
scene, a configuration that would be problematic for previous IBR
approaches.

It should be no surprise that our algorithm bears many resem-
blances to earlier approaches. The main contribution of our algo-
rithm is that, unlike previously published methods, it is designed to
meet a set of listed goals. Thus, it works well on a wide range of
differing inputs, from few images with an accurate geometric model
to many images with minimal geometric information.

2 Previous Work

The basic approach to view dependent texture mapping (VDTM) is
put forth by Debevec et al. [3] in their Façade image-based model-
ing and rendering system. Façade is designed to estimate geometric
models consistent with a small set of source images. As part of this
system, a rendering algorithm was developed where pixels from all
relevant cameras were combined and weighted to determine a view-
dependent texture for the derived geometric models. In later work,
Debevec et al [4] describe a real-time VDTM algorithm. In this
algorithm, each polygon in the geometric model maintains a “view
map” data structure that is used to quickly determine a set of three
input cameras that should be used to texture it. Like most real-time
VDTM algorithms, this algorithm uses hardware supported projec-
tive texture mapping [6] for efficiency.

At the other extreme, Levoy and Hanrahan [10] describe the light
field rendering algorithm, in which a large collection of images are
used to render novel views of a scene. This collection of images
is captured from cameras whose centers lie on a regularly sampled
two-dimensional plane. Light fields otherwise make few assump-
tions about the geometry of the scene. Gortler et al. [5] describe
a similar rendering algorithm called the lumigraph. In addition,
the authors of the lumigraph paper suggest many workarounds to
overcome limitations of the basic approach, including a “rebinning”
process to handle source images acquired from general camera po-
sitions and a “depth-correction” extension to allow for more ac-

curate ray reconstructions from an insufficient number of source
cameras.

Many extensions, enhancements, alternatives, and variations
to these basic algorithms have since been suggested. These in-
clude techniques for rendering digitized three-dimensional models
in combination with acquired images such as Pulli et al. [13] and
Wood et al. [18]. Shum et al. [17] suggests alternate lower di-
mensional lumigraph approximations that use approximate depth
correction. Heigl et al. [7] describe an algorithm to perform IBR
from an unstructured set of data cameras where the projections of
the source cameras’ centers were projected into the desired im-
age plane, triangulated, and used to reconstruct the interior pixels.
Isaksen et al. [9] show how the common “image-space” coordinate
frames used in light field rendering can be viewed as a focal plane
for dynamically generating alternative ray reconstructions. A for-
mal analysis of the trade off between the number of cameras and
the fidelity of geometry is presented in [1].

3 Goals

We begin by presenting a list of desirable properties that we feel an
ideal image-based rendering algorithm should have. No previously
published method satisfies all of these goals. In the following sec-
tion we describe a new algorithm that attempts to meet these goals
while maintaining interactive rendering rates.

Use of geometric proxies: When geometric knowledge is
present, it should be used to assist in the reconstruction of a desired
ray (see Figure 1). We refer to such approximate geometric infor-
mation as a proxy. The combination of accurate geometric proxies
with nearly Lambertian surface properties allows for high quality
reconstructions from relatively few source images. The reconstruc-
tion process merely entails looking for rays from source cameras
that see the “same” point. This idea is central to all VDTM algo-
rithms. It is also the distinguishing factor in geometry-corrected lu-
migraphs and surface light field algorithms. Approximate proxies,
such as the focal-plane abstraction used by Isaksen [9], allow for
the accurate reconstruction of rays at specific depths from standard
light fields.

With a highly accurate geometric model, the visibility of any
surface point relative to a particular source camera can also be de-
termined. If a camera’s view of the point is occluded by some other
point on the geometric model, then that camera should not be used
in the reconstruction of the desired ray. When possible, image-
based algorithms should consider visibility in their reconstruction.

C1

C5

C4

C3

D

C2

C6

Figure 1: When available, approximate geometric information
should be used to determine which source rays correspond well to
a desired ray. Here Cx denotes the position of a reference camera,
and D is desired novel viewpoint.

Unstructured input: It is also desirable for an image-based
rendering algorithm to accept input images from cameras in gen-
eral position. The original light field method assumes that the cam-
eras are arranged at evenly spaced positions on a single plane. This
limits the applicability of this method since it requires a special
capture gantry that is both expensive and difficult to use in many
settings [11].

The lumigraph paper describes an acquisition system that uses a
hand-held video camera to acquire input images [5]. They apply a
preprocessing step, called rebinning, that resamples the input im-
ages from virtual source cameras situated on a regular grid. This
rebinning process adds an additional reconstruction and sampling
step to lumigraph creation. This extra step tends to degrade the
overall quality of the representation. This can be demonstrated by
noting that a rebinned lumigraph cannot, in general, reproduce its
input images. The surface light field algorithm suffers from essen-
tially the same resampling problem.
Epipole consistency: When a desired ray passes through the
center of projection of a source camera it can be trivially re-
constructed from the ray database (assuming a sufficiently high-
resolution input image and the ray falls within the camera’s field-
of-view) (see Figure 2). In this case, an ideal algorithm should
return a ray from the source image. An algorithm with epipole
consistency will reconstruct this ray correctly without any geomet-
ric information. With large numbers of source cameras, algorithms
with epipole consistency can create accurate reconstructions with
essentially no geometric information. Light field and lumigraph al-
gorithms are designed specifically to maintain this property.

Surprisingly, many real-time VDTM algorithms do not ensure
this property, even approximately, and therefore, will not work
properly when given poor geometry. The algorithms described
in [13, 2] reconstruct all of the rays in a fixed desired view using
a fixed selection of three source images but, as shown by the origi-
nal light field paper, proper reconstruction of a desired image may
involve using some rays from each of the source images. The algo-
rithm described in [4] always uses three source cameras to recon-
struct all of the desired pixels on a polygon of the geometry proxy.
This departs from epipole consistency if the proxy is coarse. The
algorithm of Heigl et al. [7] is an notable exception that, like a light
field or lumigraph, maintains epipole consistency.

C1

C5

C4

C3C2

D

C6

Figure 2: When a desired ray passes through a source camera cen-
ter, that source camera should be emphasized most in the recon-
struction. Here this case occurs for cameras C1, C2, C3, and C6.

Minimal angular deviation: In general, the choice of which
input images are used to reconstruct a desired ray should be based
on a natural and consistent measure of closeness (See Figure 3). In
particular, source image rays with similar angles to the desired ray
should be used when possible.

Interestingly, the light field and lumigraph rendering algorithms
that select rays based on how close the ray passes to a source cam-
era manifold do not quite agree with this measure. As shown in
figure 3, the “closest” ray on the (s, t) plane is not necessarily the
closest one measured in angle.

C1 C2

D

q1

q2

Figure 3: Angle deviation is a natural measure of ray difference.
Interestingly, as shown in this case, the two plane parameterization
gives a different ordering of “closeness.” Source camera C2’s ray is
closer in angle to the desired ray, but the ray intersects the camera
(s, t) plane closer to C1.

Continuity: When one requests a ray with infinitesimal small
distance from a previous ray intersecting a nearby point on the
proxy, the reconstructed ray should have a color value that is cor-
respondingly close to the previously reconstructed color. Recon-
struction continuity is important to avoid both temporal and spatial
artifacts. For example, the contribution due to any particular camera
should fall to zero as one approaches the boundary of its field-of-
view [3], or as one approaches a part of a surface that is not seen by
a camera due to visibility [14].

The VDTM algorithm of [4], which uses a triangulation of the di-
rections to source cameras to pick the “closest three” does not pro-
vide spatial continuity, even at high tessellation rates of the proxy.
Nearby points on the proxy can have very different triangulations
of the “source camera view map” resulting in very different recon-
structions. While this objective is subtle, it is nonetheless impor-
tant, since lack of such continuity can introduce noticeable artifacts.

Resolution sensitivity: In reality, image pixels are not really
measures of a single ray, but instead an integral over a set of rays
subtending a small solid angle. This angular extent should ideally
be accounted for by the rendering algorithm (See Figure 4). For
example, if a source camera is far away from an observed surface,
then its pixels represent integrals over large regions of the surface.
If these ray samples are used to reconstruct a ray from a closer
viewpoint, an overly blurred reconstruction will result (assuming
the desired and reference rays subtend comparable solid angles).
Resolution sensitivity is an important consideration when combin-
ing source rays from cameras with different focal lengths, or when
combining rays from cameras with varying distance and oblique-
ness relative to the imaged surface. It is seldom considered in tra-
ditional light field and lumigraph rendering, since the source cam-
eras usually have common focal lengths and are located roughly
the same distance from any reconstructed surface. However, when
using unstructured input cameras, a wider variation in camera-to-
surface distances can arise, and it is important to consider image
resolution in the ray reconstruction process. To date, no image-
based rendering approaches have dealt with this problem.

Equivalent ray consistency: Through any empty region of
space, the ray along a given line-of-sight should be reconstructed
consistently, regardless of the viewpoint position (unless dictated
by other goals such as resolution sensitivity or visibility) (See Fig-
ure 5). This is not the case for unstructured rendering algorithms
that use desired-image-space measurements of “ray closeness” [7].
As shown in Figure 5, two desired cameras that share a desired ray
will have a different “closest” cameras, therefore giving different
reconstructions.

C1

C5

C4

C3

D

C2

C6

Figure 4: When cameras have different views of the proxy, their
resolution differs. Here cameras C1 and C5 see the same proxy
point with different resolutions.

C1

C2

D2

D1

Figure 5: When ray angle is measured in the desired view, one can
get different reconstructions for the same ray. The algorithm of
Heigl et al. would determine C2 to be the closest camera for D1,
and C1 to be the closest camera for D2. The switch in reconstruc-
tions occurs when the desired camera passes the dotted line.

Real-time: It is desirable that the rendering algorithm run at in-
teractive rates. Most of the image-based algorithms that we consid-
ered here achieve this goal. In designing a new algorithm to meet
our desired goals we have also strived to ensure that the result is
still computed efficiently.

Table 1 summarizes the goals of what we would consider an ideal
rendering method. It also compares our Unstructured Lumigraph
Rendering (ULR) method to other published methods.

4 Unstructured Lumigraph Rendering

We present a lumigraph rendering technique that directly renders
views from an unstructured collection of input images. The input
to our Unstructured Lumigraph Rendering (ULR) algorithm is a
collection of source images along with their associated camera pose
estimates as well as an approximate geometric proxy for the scene.

4.1 Camera Blending Field

Our real-time rendering algorithm works by first evaluating a “cam-
era blending field” at a set of vertices in the desired image plane
and interpolating this field over the whole image. This blending
field describes how each source camera is weighted to reconstruct
a given pixel. The calculation of this field is based on our stated

Goals lh96 gor96 deb96 pul97 deb98 pigh98 hei99 wood00 ULR
Use of Geometric Proxy n y y y y y y y y
Epipole Consistency y y y n n n y y y
Resolution Sensitivity n n n n n n n n y
Unstructured Input n resamp y y y y y resamp y
Equivalent Ray Consistency y y y y y y n y y
Continuity y y y y n y y y y
Minimal Angular Deviation n n y n y y n y y
Real-Time y y n y y y y y y

Table 1: Comparison of the algorithms lh96 [10], gor96 [5], deb96 [3], pul97 [13], deb98 [4], pigh98 [12], hei99 [7], wood00 [18], and ULR
according to our desired goals.

goals, and includes factors related to the angular difference between
the desired ray and those available in the given image set, estimates
of undersampling, and field-of-view [13, 12]. Given the blending
field, each pixel of the desired image is then reconstructed by a
weighted average of the corresponding pixels in each weighted in-
put image.

We begin by discussing how cameras are weighted based on an-
gle similarity. Then, we generalize our approach for other consid-
erations such as resolution and field-of-view.

A given desired ray rd, intersects the surface proxy at some
front-most point p. We consider the rays ri from p to the centers
Ci of each source camera i. For each source camera we define the
angular penalty, penaltyang(i), as the angular difference between
ri and rd. (see Figure 6).

C1 C2

D

p

Ck

penalty (2)
thresh

...ang

ang

Figure 6: The angle of the kth farthest camera is used as an angle
threshold.

When penaltyang(i) is zero we would like the blending weight
used for camera i, wang(i), to be at a maximum. To best satisfy
epipole consistency, this maximum weight should be infinite rela-
tive to the weights of all other cameras. It is unclear, however, when
wang(i) for a particular camera should drop to zero.

For example, one way to define a smooth blending weight would
be to set a global threshold threshang . Then, the weight wang(i)
could decrease from wmax to zero as penaltyang(i) increases from
zero to threshang . This approach proves unsatisfactory when us-
ing unstructured input data. In order to account for desired pixels
where there are no angularly close cameras, we would need to set
a large threshang . But using a large threshangwould blend too
many cameras at pixels where there are many angularly close cam-
eras, giving an unnecessarily blurred result.

One way to solve this of problem is to use a k-nearest neighbor
interpolation approach. That is, we consider only the k cameras
with smallest penaltyang(·)s when reconstructing a desired ray.
All other cameras are assigned a weight of zero. In this approach,
we must take care that a particular camera’s wang(i) falls to zero
as it leaves the set of closest k. We accomplish this by defining
an adaptive threshang . We define threshang locally to be the kth

largest value of penaltyang(·) in the set of k-nearest cameras. We
then compute a weight function that has maximum value wmax at
zero and has value zero at threshang .

The blending weight that we use in our real-time system is

wang(i) = 1 − penaltyang(i)

threshang
.

This weight function has a maximum of 1 and falls off linearly to
zero at threshang , and so consequently it does not exactly satisfy
epipole consistency. Epipole consistency can be enforced by multi-
plying wang(i) by 1/penaltyang(i) (or by other ways) at the cost
of more computation.

We then normalize the blending weights to sum to unity,

w̃ang(i) =
wang(i)∑k

j=1
wang(j)

.

This weighting is well defined as long as all k closest cameras are
not equidistant. For a given camera i, w̃ang(i) is a smooth function
as one varies the desired ray along a continuous proxy surface.

In addition to angular difference, we also wish to penalize cam-
eras using metrics based on resolution and field-of-view. Using
these various penalties, we define the combined penalty function as

penaltycomb(i) = α penaltyang(i) + β penaltyres(i)

+ γ penaltyfov(i)

where the constants α, β, and γ control the relative importance of
the different penalties. A constant can be set to zero to ignore a
penalty. We can then define w̃comb(i) using the k-nearest neighbor
interpolation strategy described above.
Resolution Penalty Given the projection matrices of the refer-
ence cameras, the proxy point p, and the normal at p, we can predict
the degree of resolution mismatch by using the Jacobian of the pla-
nar homography relating the desired view to a reference camera.
This calculation subsumes most factors resulting in resolution mis-
matches, including distance, surface obliqueness, focal length, and
output resolution.

For efficiency, we approximate this computation by considering
only the distances from the input cameras to the imaged point p. In
addition, we generally are only concerned with source rays ri that
significantly undersample the observed proxy point p. Of course,
oversampling can also lead to problems (e.g., aliasing), but proper
use of mip-mapping can avoid the need to penalize images for over-
sampling. Thus, the simplified resolution penalty function that we
use is

penaltyres(i) = max(0, ‖p − Ci‖ − ‖p − D‖),
where D is the center of the desired camera.
Field-of-View Penalty We do not want to use rays that fall out-
side the field-of-view of a source camera. We can include this con-
sideration using the penalty function:

penaltyfov(i) =

{
0 if ri within field-of-view
∞ otherwise ,

Figure 7: A visualized camera blending field. This example is from
the “hallway” dataset described in the results section. The virtual
camera is looking down the hallway.

which simply rejects all cameras that do not see the proxy point.
In order to maintain continuity, we adjust this penalty function so
that it smoothly increases toward ∞ as ri approaches the border of
image i.

With an accurate proxy, we would in fact compute visibility be-
tween p and Ci and only consider source rays that potentially see
p as in [4]. In our setting we use proxies with unit depth complex-
ity, so we have not needed to implement visibility computation. A
visibility penalty function would assign ∞ to completely invisible
points and small values to visible points. Care should be taken to
smoothly transition from visible to invisible regions [12, 14].

In Figure 7 we visualize a camera blending field by applying this
computation at each desired pixel. In this visualization, each source
camera is assigned a color. The camera colors are blended at each
pixel to show how they combine to define the blending field.

4.2 Real-time rendering

The basic strategy of our real-time renderer is to evaluate the cam-
era blending field at a sparse set of points in the image plane,
triangulate these points, and interpolate the camera blending field
over the rest of the image (see Figure 9). This approach assumes
that the camera blending field is sufficiently smooth to be accu-
rately recovered from the samples. The pseudocode for the al-
gorithm and descriptions of the main procedures appear below:

Clear frame buffer to zero
Select camera blending field sample locations
Triangulate blending field samples
for each blending field sample location j do

for each input image i do
Evaluate blending weight i for sample location j

end for
Renormalize and store k closest weights at j

end for
for each input image i do

Set current texture to texture i
Set current texture matrix to matrix i
Draw triangles with blending weights in alpha channel

end for

C1

C2

D

e1

e2

Figure 8: Our real-time renderer uses the projection of the proxy,
the projection of the source camera centers, and a regular grid to
triangulate the image plane.

Selecting Blending Field Samples We sample the camera
blending field at a sparse set of locations in the image plane. These
locations, which correspond to desired viewing rays, are chosen
according to simple rules.

First, we project all of the vertices of the geometric proxy into the
desired view and use these points as sample locations. To enhance
epipole consistency, we next add a sample at the projection of every
source camera in the desired view. Finally, we include a regular grid
of samples on the desired image plane to obtain a sufficiently dense
set of samples needed to capture the interesting spatial variation of
the camera blending weights.

Triangulating Samples We next construct a constrained De-
launay triangulation of the blending field samples (see Figure 8).

First, we add the edges of the geometric proxy as constraints on
the triangulation. This constraint prevents triangles from spanning
two different surfaces on the proxy. Next, we add the edges of the
regular grid as constraints on the triangulation. These constraints
help keep the triangulation from flipping as the desired camera is
moved.

Given this set of vertices and constraint edges, we create
a constrained Delaunay triangulation of the image plane using
Shewchuk’s software [16]. The code automatically inserts new ver-
tices at all edge-edge crossings.

Evaluating Blending Weights At each vertex of the trian-
gulation, we compute and store the set of cameras with non-zero
blending weights and their associated blending weights. Recall that
at a vertex, these weights always sum to one.

Multiple sets of weights may need to be stored at each sample
location if the sampling ray intersects the proxy multiple times. Tri-
angles adjacent to these samples may need to be rendered multiple
times on different proxy planes.

Drawing Triangles We render the desired image as a set of pro-
jectively mapped triangles as follows. Suppose that there are a total
of m unique cameras (k ≤ m ≤ 3k, where k is the neighbor-
hood size) with nonzero blending weights at the three vertices of a
triangle.

Then this triangle is rendered m times, using the texture from
each of the m cameras. When a triangle is rendered using one of
the source camera’s texture, each of its three vertices is assigned
an alpha value equal to its weight at that vertex. The texture ma-
trix is set to projectively texture the source camera’s data onto the
rendered proxy triangle. For sampling rays that intersect the proxy
multiple times, the triangles associated with those samples are ren-
dered once for each planar surface that they intersect, with the z-
buffer resolving visibility.

Figure 9: A visualized sampled color blending field from the real-
time renderer. Camera weights are computed at each vertex of the
triangulation. The sampling grid is 32 × 32 samples.

5 Results

We have collected a wide variety of data sets to test the ULR algo-
rithm. In the following, we describe how the data sets are created
and show some renderings from the real-time ULR algorithm. In all
cases, the size k of the camera neighborhood is 4, α = 1, β = 0,
and γ = 1 unless stated otherwise. A 16 × 16 size grid is used for
sampling the camera blending field.

Pond The pond dataset (Figure 11a) is constructed from a two
second (60 frame) video sequence captured with a digital hand-held
video camera. The camera is calibrated to recover the focal length
and radial distortion parameters of the lens. The cameras’ positions
are recovered using structure-from-motion techniques.

In this simple example, we use a single plane for the geometric
proxy. The position of the plane is computed based on the positions
of the cameras and the positions of the three-dimensional structure
points that are computed during the vision processing. Specifically,
the plane is oriented (roughly) parallel to the camera image planes
and placed at the average 1/z distance [1] from the cameras.

Since the cameras are arranged roughly along a linear path, and
the proxy is a single plane, the pond dataset exhibits parallax in only
one dimension. However, the effect is convincing for simulating
views near the height at which the video camera was held.

Robot The Robot dataset (Figure 11b) was constructed in the
same manner as the pond dataset. In fact, it is quite simple to build
unstructured lumigraphs from short video sequences such as these.
The robot sequence exhibits view-dependent highlights and reflec-
tions on its leg and on the tabletop.

Helicopter The Helicopter dataset (Figure 11c) uses the ULR
algorithm to achieve an interesting added aspect: motion in a lumi-
graph. To create this ”motion lumigraph”, we exploit the fact that
the motion in the scene is periodic.

The lumigraph is constructed from a continuous 30 second video
sequence in which the camera is moved back and forth repeatedly
over the scene. The video frames are then calibrated spatially using
the structure-from-motion technique described above. The frames
are also calibrated temporally by measuring the period of the heli-
copter. Assuming the framerate of the camera is constant, we can
assign each video frame a timestamp expressed in terms of the pe-
riod of the helicopter. Again, the geometric proxy is a plane.

During rendering, a separate unstructured lumigraph is con-
structed and rendered on-the-fly for each time instant. Since very
few images occur at precisely the same phase of the period, the
unstructured lumigraph is constructed over a time window. The

current time-dependent rendering program (an early version of the
ULR algorithm) ignores the timestamps of the images when sam-
pling camera weights. However, it would be straightforward to
blend cameras in and out temporally as the time window moves.

Knick-knacks The Knick-knacks dataset (Figure 11d) exhibits
camera motion in both the vertical and horizontal directions. In
this case, the camera positions are determined using a 3D digitizing
arm. When the user takes a picture, the location and orientation of
the camera is automatically recorded. Again the proxy is a plane,
which we position interactively by “focusing” [9] on the red car in
the foreground.

Car While the previous datasets primarily occupy the light field
end of the image-based spectrum, the Car dataset (11e) demon-
strates the VDTM aspects of our algorithm. This dataset consists
of only 36 images and a 500 face polygonal geometric proxy. The
images are arranged in 10 degree increments along a circle around
the car. The images are from an “Exterior Surround Video” (similar
to a QuicktimeVR object) database found on the carpoint.msn.com
website.

The original images have no calibration information. Instead,
we simply assume that the cameras are on a perfect circle looking
inward. Using this assumption, we construct a rough visual hull
model of the car. We simultaneously adjust the camera focal lengths
to give the best reconstruction. We simplify the model to 500 faces
while maintaining the hull property according to the procedure in
[15]. Note that the geometric proxy is significantly larger than the
actual car, and it also has noticeable polygonal silhouettes. How-
ever, when rendered using the ULR algorithm, the rough shape of
the proxy is largely hidden. In particular, the silhouettes of the ren-
dered car are determined by the images and not the proxy, resulting
in a smooth contour.

Hallway The Hallway dataset (Figure 11f) is constructed from a
video sequence in which the camera moves forward into the scene.
The camera is mounted on an instrumented robot that records its po-
sition as it moves. This forward camera motion is not handled well
by previous image-based rendering techniques, but it is processed
by the ULR algorithm with no special considerations.

The proxy for this scene is a six sided rectangular tunnel that is
roughly aligned with the hallway walls [8]. None of the cabinets,
doors, or other features are explicitly modeled. However, virtual
navigation of the hallway gives the impression that the hallway is
populated with actual three-dimensional objects.

The Hallway dataset also demonstrates the need for resolution
consideration. In Figure 10a, we show the types of blurring ar-
tifacts that can occur if resolution is ignored. In Figure 10b, we
show the result of using our simple resolution accommodation (β,
which depends on the global scene scale, was 0.05). Low resolu-
tion images are penalized, and the wall of the hallway appears much
sharper, with a possible loss of view-dependence where the proxy is
poor. Below each rendering in Figure 10 appears the corresponding
camera blending field. Note that 10b uses fewer images on the left
hand side of the image, which is where the original rendering had
most problems with excessive blurring. In this case, the removed
cameras are too far behind the viewer.

6 Conclusion and Future Work

We have presented a new image-based rendering technique for ren-
dering convincing new images from unstructured collections of in-
put images. We have demonstrated that the algorithm can be exe-
cuted efficiently in real-time. The technique generalizes lumigraph
and VDTM rendering algorithms. The real-time implementation
has all the benefits of structured lumigraph rendering, including

(a) (b)

Figure 10: Operation of the ULR for handling resolution issues: (a) shows the hallway scene with no consideration of resolution and (b)
shows the same viewpoint rendered with consideration of resolution. Beside each image is the corresponding sampled camera blending field.

speed and photorealistic quality, while allowing for the use of geo-
metric proxies, unstructured input cameras, and variations in reso-
lution and field-of-view.

Many of our choices for blending functions and penalty func-
tions are motivated by the desire for real-time rendering. More
work needs to be done to determine the best possible functions for
these tasks. In particular, a more sophisticated resolution penalty
function is needed, as well as a more principled way to combine
multiple, disparate penalties.

Further, nothing prevents our current implementation from sam-
pling the blending field non-regularly. An interesting optimization
would be to adaptively sample the blending field to better capture
subtle variations and to eliminate visible grid artifacts.

Finally, not all the desired properties are created equal. It is clear
that some are more important than others (e.g., equivalent ray con-
sistency seems less important), and it would be useful to quantify
these relationships for use in future algorithms.

References
[1] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenop-

tic sampling. SIGGRAPH 00, pages 307–318.

[2] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating static envi-
ronments using image-space simplification and morphing. 1997 Symposium on
Interactive 3D Graphics, pages 25–34.

[3] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from
photographs. SIGGRAPH 96, pages 11–20.

[4] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-mapping. Eurograph-
ics Rendering Workshop 1998.

[5] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. SIGGRAPH 96, pages 43–54.

[6] P. Heckbert and H. Moreton. Interpolation for polygon texture mapping and
shading. State of the Art in Computer Graphics: Visualization and Modeling,
1991.

[7] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool. Plenoptic modeling
and rendering from image sequences taken by hand-held camera. Proc. DAGM
99, pages 94–101.

[8] Y. Horry, K. Anjyo, and K. Arai. Tour into the picture: Using a spidery mesh
interface to make animation from a single image. SIGGRAPH 97, pages 225–
232.

[9] A Isaksen, L. McMillan, and S. Gortler. Dynamically reparameterized light
fields. SIGGRAPH ’00, pages 297–306.

[10] M. Levoy and P. Hanrahan. Light field rendering. SIGGRAPH 96, pages 31–42.

[11] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project: 3d scanning
of large statues. SIGGRAPH 2000, pages 131–144.

[12] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin. Synthesizing
realistic facial expressions from photographs. SIGGRAPH 98, pages 75–84.

[13] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and
Werner Stuetzle. View-based rendering: Visualizing real objects from scanned
range and color data. Eurographics Rendering Workshop 1997, pages 23–34.

[14] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg
Welch, Herman Towles, Brent Seales, and Henry Fuchs. Multi-projector dis-
plays using camera-based registration. IEEE Visualization ’99, pages 161–168.

[15] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Sny-
der. Silhouette clipping. SIGGRAPH 2000, pages 327–334.

[16] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator. First Workshop on Applied Computational Geometry,
pages 124–133, 1996.

[17] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. SIG-
GRAPH 99, pages 299–306.

[18] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp,
David H. Salesin, and Werner Stuetzle. Surface light fields for 3d photography.
SIGGRAPH 2000, pages 287–296.

(a) (b) (c)

(d) (e) (f)

Figure 11: Renderings from the real-time unstructured lumigraph renderer. (a) and (b) show two virtual views of 60-image lumigraphs taken
with a hand-held video camera. (c) shows two virtual views from a 1000-image moving lumigraph. (d) shows two virtual views of a 200-
image lumigraph taken with a tracked camera. Note the active light source in the scene. (e) shows a 36-image lumigraph and its associated
geometric proxy. (Original car images copyright c© eVox Productions. Used with permission.) (f) shows two virtual views of a 200-image
lumigraph. One virtual view is looking down the hallway, much like the input images, and one view is outside the hallway.

