
Feature-Based Cellular Texturing for Architectural Models

Justin Legakis Julie Dorsey Steven Gortler

Laboratory for Computer Science Division of Engineering and Applied Sciences
Massachusetts Institute of Technology Harvard University

Abstract

Cellular patterns are all around us, in masonry, tiling, shingles, and
many other materials. Such patterns, especially in architectural set-
tings, are influenced by geometric features of the underlying shape.
Bricks turn corners, stones frame windows and doorways, and pat-
terns on disconnected portions of a building align to achieve a par-
ticular aesthetic goal. We present a strategy for feature-based cellu-
lar texturing, where the resulting texture is derived from both pat-
terns of cells and the geometry to which they are applied. As part of
this strategy, we perform texturing operations on features in a well-
defined order that simplifies the interdependence between cells of
adjacent patterns. Occupancy maps are used to indicate which re-
gions of a feature are already occupied by cells of its neighbors,
and which regions remain to be textured. We also introduce the
notion of a pattern generator — the cellular texturing analogy of
a shader used in local illumination — and show how several can
be used together to build complex textures. We present results ob-
tained with an implementation of this strategy and discuss details
of some example pattern generators.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling — geometric algorithms, languages, and systems; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism — color, shading, shadowing,

and texture.

Additional Keywords: cellular texturing, computer-aided design, procedural model-

ing, texturing.

1 Introduction

Scene and object modeling of complicated structures requires sub-
stantial human time and effort. Hence, it is important to automate
the process as much as possible. One way to achieve this goal is to
use procedural methods to help generate complex and repetitive de-
tail. The goal of such methods is to relieve designers of tedious and
difficult manual modeling tasks, and to give them more high-level
control.

For many models, especially in architectural settings, there is a
clear distinction between the basic shape (walls, doors, windows,
and arches), and embellishing patterns (bricks, stones, tiles, and
shingles). In these cases it can be useful to decompose the design
process into these two components. The basic shape can be de-
scribed with traditional geometric modeling tools, while the place-
ment of embellishing and patterned arrangements of geometric en-

Correct Incorrect

Figure 1: Texturing with 3D cells.

tities, or cells, can be encapsulated in an abstraction we refer to as
a cellular texture. The placement and pattern of these cells can be
governed with a procedural cellular texture pattern generator. The
complex operations of generating the cellular texture are coalesced
into a handful of parameters that drive the process. Ideally, there
should be enough parameters that the designer does not give up too
much power, but not so many that they become unmanageable.

A major limitation of many previous approaches to “embellish-
ment generation” is that the resulting patterns are strictly 2D, hav-
ing little to do with the 3D surface upon which the pattern is applied.
More specifically, the problem of mapping a 2D pattern onto a sur-
face is commonly cast as the problem of associating regions on the
surface with corresponding regions of the pattern. If these regions
are not aligned carefully, seams may be visible at their boundaries.
Consequently, the user is left with the difficult task of trying to gen-
erate a set of textures without objectionable discontinuities. (See
Figure 1, above.)

Cellular texturing techniques need to recognize that cells are
three-dimensional objects, and that their size and shape affect the
pattern they create. This is apparent on corners, where multiple
sides of a cell are visible. In addition, many cellular patterns are
not flush with the surface they create — cells extend outwards from
the mortar joints between them. Shadows cast by cells onto each
other and onto themselves due to their 3D geometry can have a
great effect on the overall appearance of a pattern.

In our framework, the geometry of the base mesh functions as
a scaffolding for cells. The base mesh and cellular patterns are
therefore separate, allowing the designer to consider and edit each
individually. Patterns should be flexible enough to adapt to changes
in the model, or even be applied to a model entirely different than
the one for which they were designed. The design space can be
explored both by changing the original model and by adjusting the
parameters of the patterns, with the computer creating the result of
new combinations.

1.1 Contributions

The main contribution of this paper is a strategy for applying cel-
lular textures to a base mesh. We treat this as a three-dimensional
problem, considering both the geometry of the model and of the

cells we create. With our strategy, we show how to create patterns
of cells that adapt to features of the model — aligning to edges,
wrapping around corners, and responding to annotations supplied
by the designer. We discuss geometric requirements of the input
base mesh, the organization of cellular patterns into a tree of pat-
tern generators, and the application of pattern generators to the base
mesh. We avoid problems at the boundary between adjacent pat-
terns by placing the most constrained cells first, starting with the
corners, then texturing the edges, and finishing with the faces.

While we describe the details of how our example pattern gener-
ators work, this paper is not about how to create specific patterns.
There is a wide array of literature on this subject[1, 5, 6, 9, 11, 14,
21]. We do discuss some useful techniques for creating pattern gen-
erators, with the hope of encouraging others to envision what types
of patterns they could create.

For simplicity, we require that our input models have nice pa-
rameterizations and well-defined structure. We are not claiming
that with our strategy one can tile a one-inch cube with two-foot
stones, texture a sphere with a regular pattern of square cells, or
perform other such impossible or nonsensical tasks. It is easy for
one to create a model and a pattern that are simply incompatible,
and we leave the burden of ensuring a sensible combination to the
human.

1.2 Overview

The remainder of this paper is organized as follows. We discuss
related pattern and texture generation work in Section 2. In Section
3, we discuss the input model, or “base mesh” to which cellular
textures are applied, and in Section 4 we describe the generation of
cellular textures. In Section 5, we show the details of our example
pattern generators, along with our results. In Section 6 we conclude
and suggest areas for future research.

2 Related Work

There are several algorithms for creating 2D cellular patterns.
Yessios described a prototype computer drafting system for com-
mon materials, which included a number of algorithms for gener-
ating cellular patterns[21]. His algorithms first place the cells that
require special treatment, those on the perimeter of regions. We
build on this idea, extending it to 3D cells and geometry. Miy-
ata described an algorithm for automatically generating stone wall
patterns[14]. He generates displacement data to create natural-
looking cells, using it to render his patterns with bump mapping.
These techniques produce realistic patterns on the faces of a model,
but do not consider how the 3D shape of cells affects the pattern,
nor do they consider the 3D geometry of the model to which they
are applied. When rendered on a 3D model, seams are apparent in
the textures at face boundaries.

Wong et al. addressed the problem of creating ornamental pat-
terns to fill arbitrary shapes[19]. The patterns adapt to the shape
of the region to be filled, but as with the techniques above, this is
strictly a 2D technique.

Fleischer et al. used particle systems to simulate cells con-
strained to lie on a 3D surface[10], governed by a set of “cell pro-
grams.” The cells react to properties of the model and environ-
mental factors. This technique is well suited for generating cellular
patterns that are biological in nature, however the authors warn that
cell programs can be difficult to write, and the effects of modifica-
tions can be hard to predict. As cell programs control local interac-
tions among cells, they are not practical for achieving a particular
desired global structure.

Solid texturing techniques[15] elegantly solve the problem of
texturing geometry seamlessly, even across arbitrarily complex face

boundaries. Worley introduced a cellular texture basis function[20],
a special case of which generates cells as the voronoi diagram of a
set of seed points, with remarkable results. Solid textures do tile
complex geometry seamlessly, yet they typically do not respond to
the geometry itself. Instead, the resulting textured model appears to
be carved out of a solid block of texture.

The texture synthesis techniques of Heeger and de Bonet gener-
ate tilable texture visually similar to a source image[12, 8]. Praun et
al. took a different approach, covering an object with overlapping
cutouts from a source image[16], relying on the viewer’s inability
to see the seams between textures. Praun does adapt the texture to
the base object, aligning the textures to a vector field defined over
the model. However, in general texture synthesis techniques are not
responsive to the features of the underlying model. These methods
work well for natural materials and patterns, but fail on the types of
structured cellular patterns that this paper addresses. Because they
operate on images, texture synthesis techniques are also not suitable
for generating patterns composed of 3D geometric entities.

A different body of related work is the field of parametric
modeling[13]. Models are defined in terms of the steps taken in
their construction, together with a set of geometric constraints. The
details of the steps and constraints can be edited and reevaluated,
and the designer is really generating a parameterized family or class
of objects. Cellular texturing is a form of parametric modeling. The
resulting cellular texture is a parametric model, parameterized by
both the base mesh and the cellular patterns to be applied. An im-
portant contribution of parametric modeling that we borrow is the
idea of “features.” Rather than working with just pure geometry,
features of the object are annotated to capture some higher-level
meaning of their purpose in the model.

Amburn et al. deal with the problem of resolving conflicts while
procedurally generating geometry[2]. In their work, elements of the
scene communicate with, and respond to, each other while working
together to satisfy mutual constraints. We take a different approach
to the problem, but our goals are similar. Cook introduced the idea
of shade trees[7], building complex shaders out of smaller units.
We use this idea for defining cellular patterns using a tree of simpler
pattern generators.

3 Base Mesh

In this section we discuss the base mesh, the geometric input to the
system. There are three important aspects of the base mesh. First,
the mesh is stored with a two-level geometric hierarchy. This ad-
dresses the dual role of the input model — to specify the geometry
of the surfaces to which the cellular textures are applied, and to
supply annotated features to influence and drive the patterns. Sec-
ond, edges and faces of the mesh are parameterized, providing the
pattern generators with a mapping from parameter space to world
space and a projection from world space to parameter space. Third,
the base mesh stores occupancy maps for edges and faces, to record
the portions of features that get covered as cells are placed on the
model.

While a hierarchical representation of the model, annotation of
features, and parameterization are important parts of our cellular
texturing strategy, the actual preparation of the input model is not
the focus of this paper. To create, annotate, and parameterize the
input models in our examples, we used a combination of automatic
and interactive tools. Anderson et al. discuss an algorithm for au-
tomatically detecting architectural features[3].

3.1 Geometry and Features

In this context, the term “geometry” connotes two things (see Fig-
ure 2). The low-level interpretation of the geometry is the actual

Low-level mesh (geometry) High-level mesh (features)

Figure 2: The low-level shape of the object is defined by its “child”
mesh, consisting of vertices, polygon edges, and polygons, while
the high-level features are defined by its “parent” mesh, consisting
of corners, edges, and faces.

shape of the object, as defined by the model’s polygons. We ex-
pect the form created by a cellular texture to correspond to this
shape. The high-level interpretation is the identification of the geo-
metric features of the model: faces (such as walls and roofs), edges
(boundaries between faces), and corners (intersections of edges). A
cellular texture is defined in terms of how it applies cells to these
three types of features.

To capture additional information, we annotate features with la-
bels, indicating which features are part of windows, doors, arches,
or other structures. These labels are stored as strings, attached to
features.

We use the terms vertices, polygon edges, and polygons to refer
to the elements of the low-level mesh that define the shape of the
object, to which cells are aligned. We use the terms corners, edges,
and faces to refer to the elements of the high-level mesh that are the
targets of cellular texturing operations. The mesh representation
must provide access to both levels. We use a hierarchical version of
a winged-edge adjacency data structure [4, 18], with complete mesh
structures maintained for both levels. Elements of the high-level, or
“parent” structure correspond to one or more elements of the low-
level, or “child” structure. Parent faces correspond to a collection of
connected child polygons, and parent edges correspond to a chain
of child polygon edges. Parent corners correspond to a single child
vertex, while many child vertices (such as those in the middle of
parent edges and faces) have no corresponding parent corner.

It is important to note that parent faces may be concave and may
also contain holes and multiple edge loops. For example, consider
a wall with a window in the middle.

One can envision segmenting a model into more complex fea-
tures that span multiple geometric elements of the model. We stick
with corners, edges, and faces to show how much you can do with
just these. In our experience, it has been quite natural to decompose
patterns into parts corresponding to corners, edges, and faces.

3.2 Parameterization

We require all edges and faces of the base mesh to have closed-form
parameterizations. The parameterizations must support two opera-
tions: mapping points in parameter space to a coordinate frame in
world space, and projecting points in world space to points in pa-
rameter space. Pattern generators use the mapping to place cells
they have created in parameter space onto the model. The pro-
jection from world space to parameter space is used when filling
occupancy maps (Section 3.3) with cells from adjacent features.

For the examples used in this paper, we have implemented pa-
rameterizations of edges that are composed of linear and circular
segments, faces that are made up of combinations of flat and cylin-
drical regions, and faces that are sectors of disks. Corners are not
parameterized. Figure 7 shows examples of geometry with all of
these types of parameterizations.

3.3 Occupancy Maps

Cells are stored in the base mesh with the feature for which they
were created. As cells are generated, adjacent features must know
that the space has been occupied. This information is encapsulated
in an occupancy map, a bit mask that tells a pattern generator which
parts of the feature’s parameter space have already been occupied
by cells of its neighbors, and which areas it is responsible for filling.
Occupancy maps are kept for all edges and faces. Corners do not
need occupancy maps, because they are always textured first.

Occupancy maps for faces are 2-dimensional, and are initialized
to fully “occupied.” The polygons of the low-level mesh corre-
sponding to a face are then rasterized into the face’s occupancy
map, and these areas are set to “empty.” This prevents a pattern
generator from filling cells in areas of the parameter space that are
not actually part of the face, such as the inside of windows, or the
underside of arches. When adjacent corners and edges are textured,
their cells are projected onto the face and rasterized into the map,
setting these areas to “occupied.” (See Figure 3.)

Occupancy maps for edges are 1-dimensional, and are initialized
to “empty.” The geometry of an edge need not be projected onto
the occupancy map as is done with a face, because edges never
have holes. As the two adjacent corners are textured, their cells are
projected onto the edge, setting these intervals to “occupied” in the
map.

The space that cells claim in occupancy maps is often not the
same as their actual geometry. Most patterns create cells that fill
regions completely, and then shrink them to leave gaps between
adjacent cells for mortar (see Figure 6). The space-filling shapes
are what cells claim in occupancy maps; their actual shapes are
used for rendering.

We implement occupancy maps for edges as an array of boolean
values. For faces, we implement occupancy maps with a quad tree,
both for speed in rasterizing and to allow for higher resolution. The
required resolution depends on the size and complexity of the cells.
By using a single-valued occupancy map, we can avoid intersec-
tions between cells along the curve of an edge or the surface of a
face. This is sufficient for many patterns, including all the exam-
ples shown in this paper. Representations such as octrees or layered
depth images[17] that store volumetric information could be used
to allow for patterns in which cells fit together in an overlapping
fashion.

(a) (b)

Figure 3: The occupancy map for a face indicates the areas already
occupied by cells of adjacent features (a). A pattern generator cre-
ates cells to fill the unoccupied region, fitting cells in the available
space, and/or clipping them against the occupancy map (b).

4 Pattern Generators

This section presents the details of our cellular texturing frame-
work. Much in the way that shade trees define shaders out of
smaller, simpler, and more reusable parts, we discuss the building
of cellular textures out of smaller units, which we term pattern gen-
erators.

check label

Arch Window other

arch
bricks

check type

corner edge face

orientation

horz. vert.

small
white
blocks

red
bricks

window
bottom
bricks

small
white
blocks

analyze window

bottom other

(b) Bricks

check label

Window Arch other

arch
stones

check type

corner edge face

orientation

horz. vert.
orientation

horz. vert.

small
brown
blocks

random
ashlar

small
brown
blocks

brown
window

stone

small
brown
blocks

random
ashlar

(c) Random Ashlar(a) RGB Blocks

check type

corner edge face

red
blocks

green
blocks

blue
blocks

Figure 4: Three examples of pattern generator trees.

4.1 Tree of Pattern Generators

Pattern generators implement the basic building blocks of patterns.
Arranged in a tree, a collection of pattern generators applies a cel-
lular texture to the base mesh, operating on one feature at a time.
Features of the mesh start at the root of the tree, and are passed
down until they are fully textured.

Each individual pattern generator can place cells on the feature,
and/or pass the feature on to one of its children for further process-
ing. Pattern generators may pass features to different children based
on criteria such as their label, their type (corner, edge, or face), or
the result of geometric analysis. For example, a pattern genera-
tor might look at a feature’s label, and pass “Window” features to
one subtree, and the rest to another subtree. Within the subtree for
“Window” features, a pattern generator might pass vertical edges to
one subtree, and horizontal edges to another.

Pattern generators that create cells can be general and simple,
such as nodes that create brick-shaped cells, or specific, such as
nodes that create stones for arches of a particular style. Simple
nodes are typically more reusable, useful as elements of many dif-
ferent patterns.

Figure 4 shows three examples of pattern generator trees. The
simple “RGB Blocks” tree visualizes the cells that are placed on
the three different types of features: corners, edges, and faces. The
result of applying this pattern to three different base meshes can
be seen in the second row of Figure 7. The “Bricks” tree creates
a pattern of bricks, with special treatment for features labeled as
arches and performing simple geometric analysis to find the bottom
of windows. This pattern can be seen in the third row of Figure 7.
The “Random Ashlar” tree creates a randomized stone pattern, also
with special treatment for features labeled as windows or arches,
and the result of applying this pattern can be seen in the bottom
row of Figure 7. Details of the individual pattern generators in these
examples are given in Section 5.

4.2 Ordering of Texturing Operations

The key to avoiding conflicts and intersections when placing cells
on adjacent features is to perform cellular texturing operations in
the correct order. Consider the placement of cells on the edge of a
stone building. These cells are really part of two patterns, one on
each wall. If cells are placed on the walls first, working towards
the edge from either side, it may be difficult or impossible to create
the final cells along the edge. Likewise, if cells are placed along
the multiple edges, working towards a corner, it may be tricky to
place the final cells in the corner. There are more constraints on an
edges’ cells than on a faces’ cells, and there are more constraints on
a corners’ cells than on an edges’ cells.

This suggests that it is easier to place cells on the edges
before the faces, and on the corners before the edges. The terms
corner, edge, and face should be thought of according to these
relationships, slightly more general than their usual geometric
interpretations:

corner: region of interaction between two or more edges
edge: region of interaction between two faces

Once the corners have been textured, we can proceed with the
edges, without worrying about how the edges interact with each
other. The more constrained cells that are part of patterns on multi-
ple edges have already been placed. Likewise, once the edges have
been textured, we can proceed with the faces, without worrying
about how the faces interact with each other. The difficult cells that
are part of the patterns on multiple faces have already been placed
on the edges.

What this means to pattern generators is that the patterns they
create must be partitioned into 3 parts: cells that go on corners,
cells that go on edges, and cells that go on faces. Figure 5 shows
the simple example of placing blocks on a cube, after the corners
have been textured, then after edges have been textured, and finally
after faces have been textured.

(a) (b) (c)

Figure 5: Applying cells first to all corners (a), then to all edges (b),
and then to all faces (c).

5 Examples and Results

5.1 Tools

While experimenting with writing pattern generators, we developed
some tools that we found useful for several different patterns. One
tool we reused often is a function to impose a grid structure on
a face, potentially stretching or shrinking the grid in areas so that

it lines up with with the shape of the face. We make two sorted
lists with the s and t coordinates of every corner in the face (solid
lines, above). We then divide each interval into segments as close as
possible to the desired grid size (dashed lines, above). Our simple
“RGB Blocks” pattern generator simply uses the grids of each face,
testing each potential block against the occupancy map, and creates
cells for those that pass.

Other tools we found useful for creating pattern generators are
functions for clipping the polygonal footprint of a cell against the
occupancy map, creating cell geometry from the intersection of a
set of planes, and shrinking a cell’s full claimed volume to create
its actual geometry.

5.2 Patterns

In this section, we describe how several of our individual pattern
generators work.

Bricks: To create a pattern of bricks, this pattern generator first
overlays a grid on the faces, and marks each grid space that is un-
occupied. It then connects pairs of blocks to form bricks. Single
bricks are placed on the corners. Bricks in alternating directions are
placed on the edges, filling the empty interval(s) in the occupancy
map. To fill faces, there are two options for combining bricks (see
figure, below). We want to minimize or eliminate the number of
half bricks. Since both fill the same area, picking the option that
creates the least number of bricks yields the better pattern.

If the directions for edge bricks are chosen poorly, it may not be
possible to create a nice pattern on the faces. We flip the directions
of edge bricks interactively, storing an extra bit with each corner
and edge for this purpose.

Bad Good ?

Window Bottom Bricks: This pattern generator operates only on
corners and edges, creating a row of header bricks along the bot-
tom of a window. For a corner, it creates a simple block and then
extrudes it in the opposite direction of its adjacent concave edge.
For an edge, it also creates simple blocks, and extrudes them in the
direction normal to the edge’s adjacent vertical face. It would be an
error to construct a tree that passes faces to this pattern generator.

Arch Stones: This pattern generator creates multiple rows of stones
for edges. The length and extrusion for each row of cells are pa-
rameters. As demonstrated by this pattern, cells do not necessarily
touch the feature for which they are created.

Arch Bricks: To create bricks for the edge of an arch, this pattern
generator looks at the tangent vector along the edge. For verti-
cal portions of the edge, it behaves identically to the “Bricks” pat-
tern generator, placing bricks in alternating directions. However,
once the direction deviates from vertical, bricks are placed along
the outer face, determined by choosing the direction vector with the
greater y component.

Random Ashlar: Our random ashlar pattern also makes use of the
grid tool described above, using a small grid size (dashed lines,
below). This pattern places a single stone on corners. For edges,
it creates stones in alternating directions as with bricks, but using
random heights and lengths. To tile faces, it creates a small rectan-
gle for each unoccupied space in the grid. It then picks rectangles

at random, and attempts to merge them with their neighbors, main-
taining their rectangular shape and obeying maximum size parame-
ters of the pattern generator. This process is repeated until no more
rectangles can be merged (solid lines, below).

5.3 Geometric Analysis

To build interesting patterns, some pattern generators must make
a decision about a feature, and pass it onto one of its children for
further processing. The most straightforward criteria to use is the
type of feature (corner, edge, or face) or the label attached to the
feature. However, pattern generators can also make decisions based
on the geometry of the model.

Orientation: This pattern generator passes each edge and face to
either a “Horizontal” or “Vertical” subtree. Edges are passed based
on the vector from one end to another: if the largest component is
in the y or −y direction, the edge is considered vertical. Faces are
passed based on their normal vector: if the largest component is in
the y or −y direction, the face is considered horizontal. Note, these
criteria may not always be appropriate for curved edges or faces.

Corners are neither horizontal nor vertical. They are passed to
one subtree or the other based on a boolean parameter of the pattern
generator.

Analyze Window: Given a feature labeled as a window, this pat-
tern generator determines if the feature is part of the top or bottom.
Corners with an outgoing edge in the y direction, edges that have a
neighboring face with a normal vector in the y direction, and faces
with a normal vector in the y direction are classified as on the bot-
tom, and sent to one subtree. Features on the top are determined
similarly. All other features (those on the sides of the windows) are
sent to a third subtree.

5.4 Mortar

Many cellular textures are not complete without mortar joints in be-
tween the cells. Rather than create actual geometry to fill the space
between cells, we shrink the base mesh and use it in our renderings
for the mortar (see Figure 6.)

Base Mesh

Shrunken Mesh

Cell’s Claimed Volume

Cell’s Actual Shape

Figure 6: Cell geometry and mortar.

5.5 Results

Figure 7 shows ray traced images of three patterns applied to three
different base meshes. The model in the first column has no labels,
the model in the second column is annotated with “Window” labels,
and the curved edges of the third model are labeled “Arch.” Of the
three pattern generator trees, the bricks and random ashlar patterns
give special treatment to windows and arches. If a base mesh has
no features with a particular label, the corresponding portion of the
tree may not be utilized. The same base mesh was used in each
column, and the same pattern generator tree was used in each row.

Figures 8a and 8b show two different brick patterns applied to
a model of some steps and square columns. Intermediate results
of applying the first pattern can be seen after creating cells for the
corners (c), the edges (d), a decorative pattern on the faces of the
columns (e), and the remaining space of all the faces (f).

These brick patterns rely heavily on geometric analysis to place
bricks properly. Corners are classified by their valence, the number
of convex and concave adjacent edges, and the direction (up, down,
or horizontal) of a single concave or convex edge. Even so, in many
cases there was a choice of two directions for bricks on corners and
edges, and we made these choices interactively.

The first pattern creates two diagonal bricks on the top corners of
the steps. At first glance, it may seem that bricks on the edges need
to interact with each other, violating the assumptions made in Sec-
tion 4.2. However, these patterns do fit nicely into our framework,
by generating all three bricks as the cells for a corner (see Figure
8c).

The cement stones in the second pattern were placed on the cor-
ners and edges of the steps. When the meshes for these cells were
created, the pattern generator marked polygons with roughness pa-
rameters. The meshes were then decimated and displaced with a
turbulence function prior to rendering.

The decorative patterns on the columns are an example of a pat-
tern generator placing some cells on a feature, and then passing the
feature down the tree for further processing. Figure 8e shows the
decorative pattern before the rest of the face was tiled. The size
and position of the herringbone pattern was set carefully so that the
regular brick pattern would nicely align.

The handrails were modeled separately by hand, and added to
the scene after the cells were generated.

6 Summary and Conclusion

We have described a strategy for feature-based cellular texturing,
applied to architectural models. We algorithmically generate cel-
lular textures that are the result of both an underlying model and
patterns of cells. The elements of the resulting patterns are full 3D
entities that react to features of the model.

We demonstrate our technique with several patterns. However,
this is just scratching the surface, and it opens up several interesting
areas for future work. There are countless real-world patterns to
implement and explore in our framework. We believe that a higher-
level classification and specification of patterns would be of great
benefit.

We have only been concerned with the outward appearance of
our cellular textures. However, real buildings are not one stone
deep. An interesting direction to take this work would be to gener-
ate textures with full internal structure. We would also like to create
more detailed geometry for material (such as mortar) between the
cells, as different joint toolings cause different shadows to be cast,
affecting the appearance of the texture.

This framework could be applied to more general types of mod-
els, including non-manifolds. For example, it may be more natural
to specify a stone wall by a single polygon, rather than a closed

mesh. We would also like to work with more general curves and
surfaces.

Currently, our models and patterns are designed independently,
with the user responsible for ensuring a sensible combination. An-
other area of future research would be to build a constraint-solving
layer on top of our framework. Such a system could help coordinate
the design of geometry and assignment pattern parameters.

Acknowledgments

We would like to thank Barb Cutler for an endless supply of ideas,
encouragement, and constructive criticism. Stephen Duck pro-
vided valuable information and suggestions and also modeled the
handrails in Figure 8. This work was supported by NSF awards
(CCR-9624172 and CCR-9988535), an NSF CISE Research Infras-
tructure award (EIA-9802220), and a gift from Pixar Animation
Studios.

References
[1] ALLEN, E. Fundamentals of Building Construction. John Wiley and Sons, Inc.,

New York, 1999.

[2] AMBURN, P., GRANT, E., AND WHITTED, T. Managing geometric complexity
with enhanced procedural models. In Proceedings of SIGGRAPH 86, pp. 189–
195.

[3] ANDERSON, D., FRANKEL, J. L., MARKS, J., AGARWALA, A., BEARDSLEY,
P., HODGINS, J. K., LEIGH, D., RYALL, K., SULLIVAN, E., AND YEDIDIA,
J. S. Tangible interaction + graphical interpretation: A new approach to 3d
modeling. In Proceedings of SIGGRAPH 2000, pp. 393–402.

[4] BAUMGART, B. G. A polyhedron representation for computer vision. In Proc.
AFIPS Natl. Comput. Conf. (1975), vol. 44, pp. 589–596.

[5] BUEHL, O. B. Tiles. Clarkson Potter, New York, 1996.

[6] CHABAT, P., Ed. Victorian Brick and Terra-Cotta Architecture in Full Color.
Dover Publications, Inc., New York, 1989.

[7] COOK, R. L. Shade trees. In Proceedings of SIGGRAPH 84, pp. 223–231.

[8] DE BONET, J. S. Multiresolution sampling procedure for analysis and synthesis
of texture images. In Proceedings of SIGGRAPH 97, pp. 361–368.

[9] DOWSLAND, K. A., AND DOWSLAND, W. B. Packing problems. European
Journal of Operational Research 56 (1992), 2–14.

[10] FLEISCHER, K., LAIDLAW, D., CURRIN, B., AND BARR, A. Cellular texture
generation. In Proceedings of SIGGRAPH 95, pp. 239–248.

[11] GRÜENBAUM, B., AND SHEPHARD, G. Tilings and Patterns. W. H. Freeman
and Co., New York, 1986.

[12] HEEGER, D. J., AND BERGEN, J. R. Pyramid-based texture analysis/synthesis.
In Proceedings of SIGGRAPH 95, pp. 229–238.

[13] HOFMANN, C. M., AND JOAN-ARINYO, R. Parametric modeling. To be pub-
lished as a chapter in the CADG Handbook. Current text is available on author’s
web page at http://www.cs.purdue.edu/homes/cmh/MyHome.html.

[14] MIYATA, K. A method of generating stone wall patterns. In Proceedings of
SIGGRAPH 90, pp. 387–394.

[15] PERLIN, K. An image synthesizer. In Proceedings of SIGGRAPH 85, pp. 287–
296.

[16] PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Lapped textures. In Proceed-
ings of SIGGRAPH 2000, pp. 465–470.

[17] SHADE, J., GORTLER, S. J., WEI HE, L., AND SZELISKI, R. Layered depth
images. In Proceedings of SIGGRAPH 98, pp. 231–242.

[18] WEILER, K. J. Topological structures for geometric modeling. Ph.d. thesis,
Rensselaer Polytechnic Institute, Aug. 1986.

[19] WONG, M. T., ZONGKER, D. E., AND SALESIN, D. H. Computer-generated
floral ornament. In Proceedings of SIGGRAPH 98, pp. 423–434.

[20] WORLEY, S. P. A cellular texturing basis function. In Proceedings of SIG-
GRAPH 96, pp. 291–294.

[21] YESSIOS, C. I. Computer drafting of stones, wood, plant and ground materials.
In Proceedings of SIGGRAPH 79, pp. 190–198.

Figure 7: Three Models and Three Cellular Textures

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: Brick Stairs

