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Abstract

Animating natural human motion in dynamic environments is diffi-
cult because of complex geometric and physical interactions. Sim-
ulation provides an automatic solution to parts of this problem, but
it needs control systems to produce lifelike motions. This paper
describes the systematic computation of controllers that can repro-
duce a range of locomotion styles in interactive simulations. Given
a reference motion that describes the desired style, a derived con-
trol system can reproduce that style in simulation and in new envi-
ronments. Because it produces high-quality motions that are both
geometrically and physically consistent with simulated surround-
ings, interactive animation systems could begin to use this approach
along with more established kinematic methods.

1 Introduction

Consistent interaction between characters, objects, and the sur-
roundings can be difficult to achieve in dynamic environments.
Simulation produces valid motions automatically but simulating
human motion requires a control system that computes internal
muscle forces. Without such forces, a simulated human would sim-
ply fall to the ground. The human form and the unstable dynam-
ics of its bipedal locomotion make it difficult to find muscle forces
that maintain balance, particularly in complex environments with
unexpected disturbances. Its use in computer animation is further
complicated by the need to generate motions that are comparable to
recorded motion data. This has been difficult to achieve and, except
for rag-doll effects, human simulation is rarely used in interactive
animation systems.

This paper describes controllers for interactive simulation of styl-
ized human locomotion. This control design precomputes a balance
strategy for the given style using automated analysis of linear time-
varying approximations. By tailoring the balance strategy in this
manner, a controller preserves the style better than a more cautious
strategy. For example, a controller can restrict the center of mass
to be directly above the feet at all times, but in doing so it can only
accomplish slow robotic-like motions. In contrast, the controller in
this paper can reproduce a variety of locomotion styles.

The automatic precomputation, which typically completes in less
than two minutes, determines a linear time-varying state feedback
that prescribes desired accelerations for the three largest body seg-
ments: the two legs and the torso. Simultaneously, the second feed-
back loop tracks individual joint angles to compute the accelera-
tions needed to preserve the given style. As shown in Figure 1, a

Figure 1: Automated analysis of linear time-varying systems leads
to a balance feedback policy that accounts for the underactuated
dynamics in the human motion. With balance taken care of, a con-
trol system can then reproduce a given locomotion style by tracking
every body joint. Quadratic programming combines the two feed-
back terms to compute control forces needed to simulate stylized
locomotion in new environments.

reference motion guides both the style and balance feedback. The
style feedback aims to preserve the nuances of the motion, while
the balance feedback seeks to adapt the motion of three balance-
critical segments. The control algorithm computes a final set of
forces by maintaining a desired tradeoff between the balance and
style feedback.

Interactive animation systems could use this approach in addition
to traditional kinematic solutions. Physically based simulations
automatically produce motions that are geometrically and physi-
cally consistent. When paired with a control system that produces
high-quality motion, these simulations can animate lifelike human
motion in dynamic environments, which is difficult to accomplish
with kinematics alone. Furthermore, this process transforms a sin-
gle recorded motion, valid for one environment only, into a general
purpose action that can be used in many other settings or even com-
posed with other actions to create versatile characters in games and
other interactive applications.

2 Related Work

The ability to remain balanced affects the styles of motion a char-
acter can achieve [Wieber 2002]. The earliest controllers for legged
creatures remained balanced by never allowing the projected center
of mass to leave the base of support and by moving slowly enough
so that dynamics did not have an impact on control [McGhee 1983;
Raibert 1986]. This static balancing approach restricts the style of
output simulations to slow, often unnatural motions.

An important advance was the ability to control legged creatures
with active balance which allowed the simulation of more dynamic
motions such as running and hopping and more agile walks [Miura
and Shimoyama 1984; Raibert 1986]. Later these approaches were
extended to create animations of humans executing specific tasks
[Raibert and Hodgins 1991; Hodgins et al. 1995; Wooten and Hod-
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gins 2000]. These approaches simplified control design by decou-
pling the problem into different regulation tasks, which were of-
ten understood by analyzing simple dynamics approximations. The
controller we describe also approximates the full dynamics to make
it possible to compute optimal feedback for the approximation.
However, rather than designing these policies by hand, it precom-
putes feedback gains automatically. It also incorporates motion-
capture data to ease the generation of more natural motions.

An impressive array of motions can be simulated using manually
designed feedback controllers. These controllers can be composed
to perform multiple tasks [Faloutsos et al. 2001]. However, these
control policies are task, model, and environment specific. Changes
in task, character model, or simulation environment require care-
ful redesign of a new feedback policy and there is a nonintuitive
relationship between controller parameters and simulation output.
Dynamic scaling rules and randomized search can help [Hodgins
and Pollard 1997] but it remains difficult for an artist to achieve a
desired motion style using manually designed feedback controllers.
In our approach, much of the control policy is computed automati-
cally by exploiting an explicit model of the character dynamics. In
addition, we take advantage of the fact that we know the desired
motion ahead of time by precomputing a balance policy tailored to
that motion. This reduces the number of manually adjusted param-
eters and improves the quality of simulated motion.

Others also take the approach of tracking a reference motion to im-
prove the style of simulated motions. Earlier approaches based on
tracking either avoided the issue of balance [Zordan and Hodgins
1999; Yamane and Nakamura 2003; Yin et al. 2003] or were re-
stricted to tracking standing motions [Zordan and Hodgins 2002;
Abe et al. 2007]. Yin and colleagues introduced a very effective bal-
ancing mechanism for SIMple BIped COntrol (SIMBICON), which
they also coupled with feedback error learning to track cyclic walk-
ing motions [Yin et al. 2007]. The same balancing mechanism can
also be coupled with quadratic programming to track non-cyclic
motions without relying on feedback error learning [da Silva et al.
2008]. This paper explores another form of balance through sub-
tle body adjustments instead of swing-leg placement. It is more
complex to implement, but reduces parameter tuning and generates
motions that are more similar to the given reference, including pos-
sibly non-cyclic motions such as standing, stepping, and transitions
between the two.

Optimal control has been shown to produce stylistic human motions
in offline simulations [Witkin and Kass 1988; Popović and Witkin
1999; Fang and Pollard 2003; Sulejmanpasić and Popović 2005;
Safonova et al. 2004; Liu et al. 2005]. It is conceivable that offline
trajectory optimization could be used to precompute a sequence of
control actions that reproduce a motion style. However, these com-
putations are finicky and slow. In interactive systems, they must
be recomputed frequently because they are easily invalidated with
unexpected changes in the dynamic environment. In fact, even mi-
nor accumulation of integration errors will disrupt such a policy
after only a few simulation steps [Laszlo et al. 1996]. Laszlo and
van de Panne apply limit-cycle control to automate the derivation
of closed-loop controls from a given reference motion [1996]. Ap-
proximating the step to step return map dynamics has the advan-
tage of incorporating collision effects and time-varying dynamics
into the feedback policy. The balance policy in this paper relies on
optimization and time-varying feedback to better match the given
reference motion.

Recently, researchers have been able to simulate balanced motions
by precomputing closed-loop control policies with randomized
search algorithms [Ngo and Marks 1993; Tedrake 2004; Sharon and
van de Panne 2005; Sok et al. 2007]. However, it is not known how
to extend these approaches to higher dimensional search spaces,

an important limitation given the large number of degrees of free-
dom for a 3D human character. Instead of relying on a brute-force
search, our precomputation approximates the dynamics of the char-
acter with a discrete-time linear time-varying system (LTV) by dif-
ferentiating system dynamics along the reference motion. This al-
lows us to automate our analysis and to precompute balance policies
efficiently. LTV approximations have previously been exploited for
simple walking systems using differential dynamic programming
[Jacobson and Mayne 1970; Atkeson and Morimoto 2003; Tassa
et al. 2008]. In this work, we show how to apply controls derived
for simple walking systems to more realistic 3D characters and how
to incorporate desired motions from motion data.

3 Balance

A balance strategy determines the style of motion that can be repro-
duced in simulation. Conservative strategies may maintain balance
by restricting the center of mass to be above footprints at all times.
This is a safe strategy but it produces slow robotic motions. A reg-
ular walk requires excursions beyond these regions of support and
more stylized motions may require even more delicate balancing.
Manual design of a balance strategy is possible but tedious and it
requires some knowledge of the expected terrain. Our goal is to
devise an inexpensive control approach that tailors itself to the pro-
vided reference motion automatically. In this section, we describe
the precomputation of a balance policy for a given reference mo-
tion.

3.1 Balance Objective

Maintaining balance requires careful manipulation of all limbs to
adjust the location of the overall center of mass. Control designers
often make simplifying assumptions to make this design easier, its
analysis simpler, and its use more broadly applicable [Raibert 1986;
Laszlo et al. 1996]. Full and Koditschek argue that simple models
play an important role in neuromechanical hypotheses of motion
control [1999]. Others have used simple models to simplify high-
dimensional nonconvex optimizations [Popović and Witkin 1999;
Fang and Pollard 2003; Safonova et al. 2004]. We, too, will make
similar approximations for the stepping motions we are interested
in controlling. What makes our approach unique is that wemake the
entire analysis automatic and its application efficient by exploiting
the information in provided reference motions.

We formulate balance control as an optimization that tracks the pro-
vided reference motion. Consider a dynamical system with n de-
grees of freedom andm actuators. A reference motion for that sys-
tem is a sequence of states x̄1, . . . , x̄T , where each state x̄t ∈ R

2n

includes generalized positions and velocities. The current track-
ing error is the difference between the current and desired state
Δx = x − x̄. An optimal controller, then, finds the sequence
of control actions, u ∈ R

m, that minimizes the total tracking cost:

arg min
u

Δx�
T QT ΔxT +

T−1
X

t=1

Δx�
t QtΔxt + u�

t Rtut (1a)

subject to xt+1 = F (xt, ut). (1b)

The system function F expresses the discrete dynamics of the sys-
tem. We use the discrete expression instead of the continuous form,
ẋ(t) = f(x(t), u(t)) because numerical integrators fundamen-
tally assume constant control force u(s) = ut over finite intervals
s ∈ [t, t + δt] of short duration:

F (xt, ut) = xt +

Z t+δt

t

f(x(s), ut) ds (2)
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Figure 2: A simple three link model is constructed from the geo-
metric and inertial properties of the character model. The inertial
properties of each simple link are created by summing the inertial
properties of corresponding links on the simple character. The base
link is attached to the ground with a three-dof ball joint. Two three-
dof ball joints connect the other two links to the base link. The
yellow dots represent centers of mass, which are in agreement with
the detailed character model.

The tracking and control costs are determined by the (semi) positive
definite matrices, Qt ≥ 0 ∈ R

2n×2n and Rt > 0 ∈ R
m×m, that

express the desired compromise or the optimal performance. For
example, if Q weights the tracking error across all joints equally,
then the optimal control will reduce tracking errors in the wrist
motion as vigorously as it corrects errors in the upper leg motion.
While this choice preserves the style of hand and leg motion alike,
it can also lead to poorly balanced motion because the legs and
the upper body play a more critical role in bipedal locomotion.
Designing these tradeoffs is more difficult and less general when
the model has many degrees of freedom. Instead, we use a simple
three-link model (Figure 2) that suppresses many details while pre-
serving only those aspects of dynamics that are most relevant for
balance control.

The three-link model is underactuated like the full human character
with its mass distributed over the three-links. These are important
features for recreating human motion strategies which manipulate
total linear and angular momentum to maintain balance [Abdallah
2005; Kajita et al. 2003; Pratt et al. 2006]. The base link approx-
imates the contact between the foot and the ground with an unac-
tuated ball joint. The next link is attached to the base with a ball
joint like upper body in the human figure. This allows it to speed
up and slow down by leaning forwards and backwards. Lastly, the
third link is attached to the upper body with a ball joint just like a
swing leg whose motion is used to anticipate the next contact. We
then adapt the same control formulation in Equation (1) using the
state of the simple model and the system function derived from the
dynamics for the three-link model: ẋ(t) = g(x(t), u(t)), where
x ∈ R

18 consists of three rotations 1 and three angular velocities,
and u ∈ R

6. The inertial properties for the dynamics of the sim-
ple model are constructed automatically by accumulating inertial
properties of corresponding links in the full model.

3.2 Computation of Balance Controls

Even with the simple model, interactive computation of the con-
trol policy according to Equation (1) remains impractical. It is a

1In practice, we represent rotations with quaternions making x slightly
bigger but the same formulation works for euler angle representations.

mapping reference states

Figure 3: The state of the character is geometrically mapped to the
approximate model. The user annotates sections of the reference
motion corresponding to different contact states. A simple model is
constructed for each single support section of the reference motion
and the motion is retargeted geometrically to produce a sequence of
desired states for the simple model. At runtime, the same mapping
is used to determine the current tracking error for the three-link
model.

nonconvex optimization problem because of the nonlinear dynam-
ics of the simple model. These problems can be solved with smooth
optimization but they require a good initial guess and are still too
slow for interactive simulation [Betts 2001]. Moreover, the solu-
tion would only be valid for a single initial condition. In interactive
animation systems, we would also need to compute controls fast
enough to reject any new disturbances.

Linear Time-Varying Approximation Our solution approxi-
mates the nonlinear dynamics of the simple model with a discrete-
time linear time-varying system (LTV):

Δxt+1 = AtΔxt + BtΔut. (3)

The time-varying system matrices At ∈ R
18×18 and Bt ∈ R

18×6

are computed by linearizing the nonlinear system dynamics along
the desired reference trajectories. Given the system function G
for the simplified dynamics (cf. Equation (2)), the time-varying
system matrices are the Jacobians At = D1G(x̄t, ūt) and Bt =
D2G(x̄t, ūt) of G with respect to the first and second argument.

We calculate the reference trajectory, x̄, using a simple geometric
mapping from the character to the simple model (see Figure 3). The
ankle of the supporting leg of the character is mapped to the base
joint of the simple model. Then, the location of the center of mass
of the support leg relative to the ankle is used to determine the angle
of the base link on the simple model. This angle determines the
location of the “hip” on the simple model. The relative locations of
centers of mass of the upper body and swing leg are similarly used
to determine the orientation of the remaining links on the simple
model. The relative velocities of the centers of mass on the full
character determine the angular velocities of the simple model.

We annotate sections of each reference motion to delineate different
contact states. A simple model and associated LTV is constructed
for each single support phase. In a simple walk cycle for example,
there would be an LTV system for the right step and another for the
left (Figure 4). The LTV systems do not span collision events.

We use iterative optimization to estimate the matching control
forces ū for the mapped reference motion [Li and Todorov 2004].
The optimization usually converges in less than five iterations and
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Figure 4: The balance control approximates dynamics of each sin-
gle support phase with a linear time-varying system. Dwell times
are determined manually by timing corresponding phases in the ref-
erence motion. The balance control illustrated in this diagram al-
ternates between LTV systems for left and right step with the option
to pause and restart.

the total time needed to compute the LTV matrices typically com-
pletes in less than two minutes. While it is convenient that these
precomputations are quick, speed is not essential here because the
LTV systems are constructed only once for each reference motion.

Feedback Policy The LTV approximation allows us to compute
the optimal feedback policy for a problem with quadratic cost func-
tions. We apply this idea to derive balance control from this ap-
proximation of the original formulation:

min
Δu

||ΔxT ||2 +
T−1
X

t=1

c||Δxt||2 + ||Δut||2 (4)

subject to Δxt+1 = AtΔxt + BtΔut, (5)

The time window T is determined by the duration of the corre-
sponding single support phase in the reference motion. The scaling
constant c determines the tradeoff between tracking fidelity and ad-
ditional control effort. We found a value of c = 0.1 yielded the best
results in our experiments, but many other values will yield motion
of similar quality.

The solution to this problem is a linear function of the tracking
error, Δut = KtΔxt, which is known as the Linear Quadratic
Regulator (LQR) [Stengel 1994]. The feedback gains Kt are pre-
computed efficiently by numerically integrating Riccati equations
[Kalman 1960; Brotman and Netravali 1988; Stengel 1994]. This
solution is optimal for the given LTV system. Differential dynamic
programming is closely related to LQR and has been exploited for
simple walking systems [Jacobson and Mayne 1970; Atkeson and
Morimoto 2003; Tassa et al. 2008].

In addition to allowing us to formulate an effective balance-favoring
objective, the simple model has three other benefits. First, it sim-
plifies computation of LTV approximations. Multi-body simula-
tors typically solve linear complementarity programs to compute
frictional contact forces [Baraff 1994; Anitescu et al. 1998] which
are non-smooth mappings of the current state. Instead, our simple
model approximates this contact with an unactuated joint whose
action is a smooth function of the state. Second, the computation
of the optimal feedback gains is faster. The computation of LQR
control is O(Tn3) where T is the number of time samples. Since
the simple model has fewer degrees of freedom (9 versus 60), the
computation of optimal feedback gains is faster. Third, the simple
model reduces the memory needed to store the optimal feedback
gains. The optimal gain matrix requires O(Tn2) space, which
makes it less practical to store feedback gains for the full human

model, especially for many reference motions. The simple model,
on the other hand, requires only a small fraction of that space.

In principle, linear approximations could differentiate through con-
tact transitions. For example, Popović and colleagues do so for
rigid body simulations with frictionless impacts [2000]. We take a
simpler approach by approximating each single support phase (e.g.
alternating left and right steps for walking). During double support,
the control relies on another feedback mechanism (§4.1) to stabi-
lize the character. Delineating the reference motions in this way
is needed given our particular choice of simple model. It simplifies
contact dynamics and has the advantage of making it easier to chain
different reference motions. A disadvantage of breaking the feed-
back policies apart is that they are no longer optimal for tracking an
entire motion.

We have now described the precomputation portion of our con-
troller which finds a set of time varying gain matrices to stabilize
the motion of an approximation of our character. In the next sec-
tion, we describe a didactic example that illustrates one application
of our control: standing balance recovery.

3.3 Example: Balance Recovery

We illustrate the behavior of LQR control on a balance recovery
task for our simple three-link model. Pratt and colleagues develop
another balance strategy for an equivalent underactuated model
[2006] and many other approaches are also discussed in the liter-
ature. Unlike most of this prior work, our approach relies on fully
automated analysis with linear approximations and optimal state
feedback. And we will use the same systematic approach to reduce
the need for manual tuning when controlling more complex stylized
motions.

The task for our control is to recover balance by returning to the
“inverted-pendulum” configuration, an unstable equilibrium point
for the model. The reference motion is a single pose indicating
the inverted-pendulum configuration. The reference forces are zero
in this case because the desired pose is a static equilibrium point.
Since there is no particular time the pendulum should return to the
equilibrium point, the optimal feedback forces are determined by
the solution to an infinite-horizon problem:

min
Δu

∞
X

t=1

Δx�
t QΔxt + Δu�

t RΔut (6)

subject to Δxt+1 = AΔxt + BΔut, (7)

where the discrete-time approximation is time-invariant because the
linearization is around a single point instead of a trajectory.

The feedback control derived from this formulation is quite effec-
tive. For a model designed with rough human-like inertias and di-
mensions, the controller recovers for a range of leaning angles up to
the maximum lean of 20 degrees. This maximum lean corresponds
to a deviation of 36 centimeters between the projected center-of-
mass and the base of the support leg.

The precise manner of recovery is controlled by the tracking Q and
control R costs, with a very wide range of possible settings. We
show one time-lapse sequence of recovery in Figure 5 for the case
when the velocity errors are permitted by setting their costs to zero
while both the position and control are weighed equally by setting
their cost matrices to the identity. The controller recovers by rapidly
swinging the upper body in the direction of the fall while simulta-
neously swinging the non-stance leg in the opposite direction. Once
the center of mass is safely over the support leg, the model slowly
returns to its balanced equilibrium.
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Figure 5: To prevent a fall, the LQR balance controller employs a flywheel strategy, rapidly swinging the upper body in the direction of the
fall and the swing leg in the opposite direction. The strategy is depicted using snapshots from a simulation in the leftmost image. The arrows
indicate the direction and relative magnitude of the applied torque. For this particular model, the controller can recover from an initial error
of about 20 degrees which corresponds to the projected center of mass being approximately 36 centimeters away from the base of support.
The time evolution of the squared tracking error of this system is shown for various initial perturbations in the plots on the right. Doubling
the control cost slightly improves performance but in either case the end result is the same.

4 Balance and Style

The precomputed balance gains are tailored to a given reference
motion in order to emulate the motions of two legs and the upper
torso. The second control loop preserves finer nuances by tracking
the entire state of the character. At runtime, the two loops, balance
and style, produce different versions of the best action to take. We
arbitrate between these two suggestions using a quadratic program
that finds the feasible forces for a weighted combination of the two
suggestions.

4.1 Style Feedback

The style feedback determines the joint accelerations as needed to
track the reference motion:

as = ¨̄q + k1D(q̄, q) + k2( ˙̄q − q̇), (8)

where the comparison function D uses quaternion arithmetic to
compute the angular acceleration needed to eliminate the difference
between current and desired joint orientation [Barbič 2007]. This
feedback acceleration tracks the root of the full human figure. So,
although it primarily maintains style, it also plays a role in main-
taining balance. In a standing motion, for example, any motion of
the root produces accelerations that dampen this motion.

If desired joint accelerations are met with properly chosen control
forces, the error on each joint will behave as a spring-damper mech-
anism. The stiffness k1 and damping k2 gains determine the rise,
settling time, and the overshoot for the error-cancellation curve. We
keep things simple in our experiments with gain settings for a criti-
cally damped spring k2 = 2

√
ks, leaving only one parameter value

ks for each joint. The values change for each human figure, but
in many cases, the same values are used for all motions with that
character model (Table 1).

4.2 Balance Feedback

The balance feedback determines the stable motion of the simple
model using the precomputed state feedback gainsKt. We compute
this control by mapping the full state of the character (q, q̇) onto
the reduced state of the simple model x as described in Section 3.2.
The balance control is then a function of measured deviations Δx
and precomputed reference forces: ut = ūt + KtΔxt. To map

this motion back onto the full character, we use forward dynamics
of the simple model to compute the center-of-mass accelerations
ab for all three limbs in the simple model given the new ut. The
balance control for the full character will then seek to find joint
accelerations that match center-of-mass accelerations of the simple
model.

4.3 Quadratic Programming

Our control computes the final forces for the simulation with
quadratic programming (QP). The QP solution arbitrates between
style and balance feedback by finding joint torques that are close to
a weighted combination of the two suggested accelerations. This is
done carefully to ensure that computed torques are consistent with
the feasible ground reaction forces:

min
u,q̈,λ

ws‖as − q̈‖2 + wb‖ab − J̇cq̇ − Jcq̈‖2 (9a)

subject to q̈ = f
“

(q, q̇), u + J�
p V λ

”

(9b)

Jpq̈ + J̇pq̇ = 0, λi ≥ 0. (9c)

The objective function is a weighted sum of the style and balance
feedback terms. The balance feedback terms are desired accelera-
tions for three points on the body and are active during single sup-
port. The Jacobian matrix Jc relates the acceleration of these points
to the generalized configuration of the character. The constraints
maintain a physically consistent relationship between joint acceler-
ations q̈, control torques u, and contact forces V λ by enforcing the
contact dynamics equations at the current time instant [Abe et al.
2007]. Note that u ∈ R

n−6 is the control signal for the character
and not the simple balance model.

The manipulator equations (9b) encode the dynamics of the linked
rigid body structure representing the character. These equations can
be derived by Euler-Lagrange mechanics and can be evaluated ef-
ficiently [Featherstone and Orin 2000]. For a fixed position and
velocity, the manipulator equations express a linear relationship
between applied forces and acceleration. Similar expressions are
exploited in computed torque methods to control industrial robots
[Lewis et al. 1993]. Our formulation follows a more general formu-
lation [Abe et al. 2007] that also includes unilateral constraints on
ground reaction forces and mixed objectives.

5



To appear in ACM Transactions on Graphics 27(3)

The remaining constraint equations (9c) prevent the ground reac-
tion forces from accelerating the contact points. The expression
J�

p V λ maps external ground reaction forces expressed in a dis-
cretized friction cone basis, V , into generalized torques using the
Jacobian for the contact points Jp [Fang and Pollard 2003]. The
inequality constraint ensures that ground reaction forces do not pull
on the character (λi ≥ 0).

The behavior of the QP is controlled by the relative weights of the
objective function, wb, and ws. In practice, it is not too difficult
to find values of these parameters that work and similar values typ-
ically work for many motions on the same character. We use a
recursive implementation of linked rigid body dynamics [Feather-
stone and Orin 2000] and SQOPT to solve QP problems [Gill et al.
1997].

Adjustment with PD. Following our formulation in previous
work [da Silva et al. 2008], the controller adjusts the QP solution
with a low gain proportional-derivative (PD) component. The de-
sired pose (i.e. set point) of the PD component is the current pose
of the reference motion. The gains for the PD component were set
to gains used in previously published work [Sok et al. 2007; Yin
et al. 2007] and then further reduced by multiplying with a factor
smaller than one. Using lower gains allows the control to be less
stiff which leads to more stable simulations. The values used are
listed as the “Strength” parameters in Table 2. At run time, the
gains for a joint are scaled by the composite rigid body inertia of all
child links [Zordan and Hodgins 2002; da Silva et al. 2008].

The PD adjustments accomplishes two tasks. First, it guides the
character through contact transitions. The QP’s model of dynamics
assumes a fixed contact configuration while we would like to track
motions that make and break new contacts. Second, the PD compo-
nent adjusts the QP solution at each simulation step. The QP step
typically takes two to three milliseconds on a Pentium 4 2.8 Ghz
processor. To allow the simulation to run faster, the QP is solved
every ten to one hundred simulation steps. The PD component is
calculated at each time step allowing it to react to disturbances in-
stantly.

5 Results

The new controller produces high-quality motions for a large vari-
ety of reference motion styles. In many instances, simulations are
almost indistinguishable from input motions. Moreover, it succeeds
in the presence on unexpected disturbances, allowing it to generate
physically valid motions even in the environments that are quite dif-
ferent from the one used during motion capture. Our comparisons
with prior work reveal that customized balance strategy yields mo-
tions that better match the style of a given reference motion. The
final results and these comparisons are best seen in our accompany-
ing video.

5.1 Style

The automatic derivation of our controller simplifies simulation of
stylized human motions. We demonstrate this versatility by simu-
lating motions acquired from several different sources: the dataset
assembled by Sok and his co-workers [2007]; motions generated by
the SIMBICON controller [Yin et al. 2007]; and our own dataset of
stylized motions recorded in a motion-capture studio. Time-lapse
snapshots of some example simulations are shown in Figure 8.

Changing styles with our controller is straightforward. Once a good
set of controller parameters have been found for one motion, those
parameters typically work for many reference motions. Listed are

Motion ks wb

2D Data
Walk 500 0.1
Uphill 500 0.1
Backwards 500 0.1
March and Walk 500 0.1
3D SIMBICON
Walk 1000 0.1
Downhill 1000 0.1
3D Mocap
Sideways Steps 1200 0.2
Monty Python 1200 0.01
Monty Python See-Saw 1200 0.01
Stop and Start 1200 0.01
Dance 1800 0.01
Sumo Stomp 1200 0.01
Turn 1200 0.01

Table 1: Changing styles with our controller is usually straightfor-
ward. Once a good set of controller parameters have been found
for one motion, those parameters typically work for many reference
motions. Listed are the parameter settings for each of the styles
simulated by our controller. The style feedback parameter is ks.
Finally, wb determines the weight of the balance feedback policy.
The style weight, ws, was fixed at 0.5 for every result.

the parameter settings for each of the styles simulated by our con-
troller. Table 1 lists several of the styles simulated by our controller
and the parameters that had to be changed. The first two datasets re-
quired very little tuning; the same parameter setting worked for all
motions in many different environments. Simulating our own styl-
ized motions required some tuning, but this still reduced to chang-
ing only two real-valued parameters.

Highly stylized motions require more expressive simple models.
For example, we were not able to track a motion where the sub-
ject swayed his arms and upper body from side to side to imitate a
charging monkey. The simple model used in our experiments so far
does not capture that balance strategy because it lacks arms, which
play a critical role for the balance of this motion. We expect that
adding additional links to our simple model would address this mis-
match.

The balance policy used by a controller determines which types of
motions can be simulated by that controller. In the extreme case, a
controller that cannot balance will simply fall down which is prob-
ably not the style intended. The controller can be better at repro-
ducing the reference style by customizing its balance policy for the
given reference motion. In the video, we compare the tracking qual-
ity with two recently proposed controllers [da Silva et al. 2008; Sok
et al. 2007]. Although some amount of tracking error is unavoid-
able (due to many differences between the simulation and the real
world), the controller with the heuristic balance policy exhibits an
irregular gait [da Silva et al. 2008]. In contrast, the controller with
a tailored balance policy yields motions that are smoother and more
faithful to the original reference motion. Direct visual comparison
also shows reduced oscillation for a backwards walk when com-
pared to the results presented by Sok and colleagues [2007].

5.2 Balance

An effective balance policy allows the controller to adapt the mo-
tion to new environments. In practice, the animator can change the
terrain or the environment to produce numerous variations from a
single reference motion. In the video, we adapt reference motions
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2D Model
Link Strength Mass Inertia
head 150 3 0.011
upper arm 200 2 0.022
lower arm 150 1 0.009
torso N/A 10 0.176
thigh 200 7 0.121
shin 200 5 0.077
foot 200 4 0.019

3D SIMBICON
Link Strength Mass Ix Iy Iz
hip N/A 16.61 0.0996 0.1284 0.1882
trunk 30 29.27 0.498 0.285 0.568
head 1.5 6.89 0.0416 0.0309 0.0331
upper arm 1.5 2.79 0.00056 0.021 0.021
lower arm 1.5 1.21 0.00055 0.0076 0.0076
hand 0.1 0.55 0.05 0.2 0.16
thigh 9 8.35 0.145 0.0085 0.145
shin 3 4.16 0.069 0.0033 0.069
foot 0.3 1.34 0.0056 0.0056 0.00036

3D Mocap
Link Strength Mass Ix Iy Iz
hip N/A 12.8 0.174 0.148 0.12
trunk 100,400 17.02 0.335 0.167 0.281
head 30,120 4.067 0.02 0.0176 0.0248
clavicle 40,100 2.51 0.0111 0.0111 0.00691
upper arm 40,100 1.42 0.0133 0.0014 0.0132
lower arm 30,120 0.57 0.003 0.0003 0.003
hand 30,120 0.09 0.00008 0.00002 0.0001
thigh 400,1600 9.013 0.204 0.0356 0.208
shin 400,1600 3.91 0.0585 0.0087 0.06
foot 100,400 0.29 0.0002 0.0004 0.0003
toe 5,20 0.23 0.0002 0.0002 0.0002

Table 2: Model parameters used for our results. The joint stiffness
values are low when compared to uses of these models in other con-
trollers. This is because much of the control effort is generated by
the QP component of our controller. The units are as follows: new-
tons per radian for the gains, kilograms for the mass, and kilogram
meters cubed for the inertias. For the model used to track motion
capture results, inertial properties were generated by integrating a
fixed density over geometric models of each limb. The dimensions
of the character were chosen to match the dimensions of our cap-
ture subject. Also, for this model, we used two sets of gains for the
PD component of the controller as indicated by comma-separated
strength values.

to sloped terrain, steps, and moving platforms. These animations
would be difficult to create using traditional key framing tools or
spacetime optimization. In addition to varying the terrain, the ani-
mator can introduce external disturbances.

As a test case, we manually tuned a PD controller which balances
through a foot placement strategy to walk on flat ground 2. The
same controller also works on a downhill slope of two degrees but
fails on slopes of three degrees or higher. To walk down steeper
slopes, one could readjust the target poses of the manual controller
and its gains. However, our controller does this automatically.
Given the reference output from the successful simulation on flat
ground, our approach can derive controllers that successfully sim-
ulate the same motion on slopes of upto five degrees. This experi-
ment demonstrates that controller adapts to new ground slopes even
without any user intervention (see Figure 6).

2A SIMBICON controller produces stable walks on steeper slopes by
departing from the original gait in a different way, namely by increasing
step lengths and forward velocity[Yin et al. 2007].
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Figure 6: We plot the horizontal components of the root link’s
up vector. The x axis is the lateral component and the z axis is
the forward component (the character is walking down negative z).
The first plot was created using our controller on a slope of five
degrees tracking the output of a manually designed PD controller
on flat ground. The second plot was created using our controller
on an uphill slope of five degrees but with the same parameters as
the downhill plot. Note that in the uphill plot, the up vector has
a more negative forward component in the upright phase (lateral
component equal to 0) indicating that the character is leaning for-
ward as compared to the downhill plot. In either case, the character
achieves a stable gait.

Our controller was not designed to handle higher level motion plan-
ning tasks. For example, it does not know how to adapt a normal
walk to walk up large steps. Applying our controller would result in
the character stubbing its toe and falling. One approach to this prob-
lem is to build a set of primitive actions with our controller and to
compose them together at runtime using the surrounding feedback.
Our approach in this paper allows us to build such simple actions
and we leave their automatic run-time composition for future work.

5.3 Composing Controllers

A library of motions can be used to derive many controllers, which
can be composed together to produce complex actions. Similar
ideas have been proposed in the past [Faloutsos et al. 2001; Yin
et al. 2007; Sok et al. 2007], but the approach in this paper may
make it simpler to derive such controls for a wider range of mo-
tions. Moreover, the new control produces high-quality motions
that could be used along with kinematic motion graphs [Kovar et al.
2002; Arikan and Forsyth 2002]. In the video, we used the ac-
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tion graph in Figure 7 to jump between normal and marching styles
including transitions between starting and stopping. In fact, even
our simple walks are transitions between controllers for the left and
right leg. Currently, the allowable transitions are specified manu-
ally. In the future, we hope to construct these action graphs auto-
matically by precomputing optimal transitions based on character
state as has been done for kinematic controllers [McCann and Pol-
lard 2007; Treuille et al. 2007].

start

left right

soldier 
left

soldier 
right

stop

Figure 7: An action graph consisting of controllers for normal and
marching styles of walking. Currently, allowable transitions are
found manually. An interesting area of future work is constructing
action graphs automatically by precomputing optimal transitions
based on character state.

5.4 Experimental Setup

Physical Modelling and Simulation The motions were simu-
lated using three different physical character models. The physical
properties of these models are provided in Table 2. These models
were constructed either to match the properties used from previous
papers [Sok et al. 2007; Yin et al. 2007] or to match our motion
capture subject. We set bone lengths to match the subjects dimen-
sions and computed inertial properties by integrating a density over
a polygonal human-like mesh [Winter 1990]. The joint stiffness
gains are significantly lower than those used in previous controllers
since most of the control effort is generated from the QP compo-
nent of our controller. This makes the control less stiff which leads
to more stable simulations. The motions were simulated in Open
Dynamics Engine (ODE) with scenes created in DANCE [Shapiro
et al. 2005].

Foot Clean up The raw mocap data is noisy, particularly for toes
and ankles which are essential for stepping motions. We cleanup
these motions to ensure that contact between the feet and the flat
ground is consistent. First, a constant offset is applied to the ankle
joints to align the feet. It is computed using a reference frame where
the feet are assumed to be flat. Next motion edits are performed to
constrain the character’s toes to be flush against the ground when
in contact. We use a “per-frame” kinematic fix with hierarchical
B-spline smoothing, similar to the approach employed by [Lee and
Shin 1999]. We manually annotate the segments of the motion with
toe contacts and then compute the global transformation of the toe
by projecting its position and orientation in the first frame of each
segment onto the ground plane. A fast, analytic IK then adjusts the
ankle, knee and hip joints minimally so that they connect with the
positioned toe segments. The result of this per-frame adjustment is
smoothed over the adjacent frames with a hierarchal B-spline. In
the video, the displayed reference motions have all been fixed in
this manner, except for the motions used in the previous work [Sok
et al. 2007], which were used as is.

6 Conclusion

A control system that reproduces stylized locomotion has two ma-
jor advantages. First, it can adapt motion-capture data to physically
consistent dynamic environments. Second, it can produce large
repertoires of simple actions. Both of these features are needed
to create versatile characters in games and other interactive appli-
cations. In this work, we demonstrate such a control system for
control of human stepping motions.

We show that automatic analysis of linear time-varying systems en-
ables efficient precomputation of balance strategies. These strate-
gies can be combined with a simple style feedback to simulate styl-
ized human stepping motions. A possible additional application of
our approach is combining it with existing controllers to improve
their stability. For example, in the results section, we took a PD
controller and extended its ability to walk on steeper slopes. Fur-
ther investigation is needed to determine whether this additional
feedback can improve stability of other controllers.

Large disturbances require higher level planning and more signif-
icant deviation from the reference motion. For example, a push
might require taking several steps to retain balance. In this paper,
we demonstrate manual composition of a few actions stabilized by
our control system. In the future, higher-level planners should be
developed to accomplish similar tasks automatically to improve ro-
bustness and respond to user input. Using a complex graph of sim-
ple actions, a higher-level planner could monitor the current state of
the character, its environment, and the provided user input to simu-
late versatile characters in rich physically simulated environments.
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Figure 8: Some examples of the styles of motion simulated by our
controller: a backwards walk and a sumo maneuver. We can sim-
ulate reference motions in new environments, such as adapting a
sideways stepping motion or a turning motion to walk down steps.
The backwards walk is adapted to walk over a dynamic seesaw. The
entire sequence is simulated creating a realistic motion that would
be difficult to animate by hand, motion capture, or synthesize kine-
matically.
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