
Acquiring and Rendering
High-Resolution Spherical Mosaics

ADAM KROPP NEEL MASTER SETH TELLER

MIT ComputerGraphicsGroup�
akropp,neel,seth� @graphics.lcs.mit.edu

Abstract

We describean acquisition and viewing methodfor
high-resolution,high-dynamicrange sphericalimage mo-
saics. Thesemosaicsconsistof hundredsof high reso-
lution, high-dynamic-range color images,each annotated
with3-DOForientationabouta commonopticalcenter. An
automatedacquisition platform captures a pre-specified
hemisphericaltiling of images. Each image is acquired
with specifiedapproximatecamera rotationandbracketed
exposuresfor high-dynamicrange.

Relative rotations among images, as well as inter-
nal camera parameters, are automaticallyrefinedusinga
correlation-basedglobaloptimization.Theimprovedrota-
tion andinternalparameterestimatesareusedin an inter-
activeviewer for smoothinspectionof the resultinglarge
sphericalmosaic. The renderer usesa modifiedform of
adaptive, incremental,parallel raycastingto samplethe
original imagesat pixelcenters,preservingdetail fromthe
raw imagery while maintaininginteractivedisplay rates.
Weshowanexampledatasetthat resolvesmillimeter-scale
detail at a viewingdistanceof tenmeters.

1 Introduction
Our groupis developingautomatedcapturetechniques

for extendedurbanenvironments[8]. The ideaof the ef-
fort is automaticreconstructionof textured3D geometric
modelsof urbanlandscapesfrom largenumbersof images
annotatedwith approximateintrinsic andextrinsic camera
parameters.Imagesaregroupedinto nodes, eacha setof
imagesacquiredat a commonoptical center. Theseform
the fundamentaldataobject of the city scanningProject
[2].

A single node containsthe information necessaryto
recreatea view of the world from one point in space
and time. By combining all of the imagesin a super-
hemisphericaltiling aroundthe viewpoint, it is possible
to tracethe color and intensity of a sampleof light rays

arriving at the optical center, effectively allowing one to
look aroundwith an appropriateviewer (e.g., as in [1]).
Informationviewedfrom a singlepoint neednot have any
notionof thesurroundinggeometry(i.e.,depth).

This paperdescribesa methodfor acquiringandview-
ingasinglehigh-resolutionhigh-dynamicrangenode,with
a camerarig and software viewing system,respectively.
The novelty hereis the sheeramountof data– we show
a mosaicof a largeinterior spacewhich combinesseveral
hundredhigh-resolution,high-dynamicrangeimages– and
thefactthatit canbeviewedsmoothlyon a modestgraph-
icsengine.

To facilitatetheacquisitionof high-resolutionmosaics,
a speciallydesignedsensorautomaticallyacquiresa node
basedonauser-specifiedspheretiling (collectionof orien-
tations).Themechanizedsystemenablestheacquisitionof
nodeswith hundredsof images,which would difficult and
tediousif donemanually. Theplatformalsoautomatically
generatesahigh-dynamic-rangeradiancemapfor eachim-
age[5].

A modified ray-castingalgorithm interactively gener-
atesa view from theoriginal imagesin real time, preserv-
ing the resolutionof the acquirednode. Radiancedatais
usedto expandthe dynamic rangeof the generatedim-
agery.

2 Acquisition
The acquisitionplatform employs a motorizedpan-tilt

head,whichrotatesthecameraaboutits opticalcenter. The
camerausedfor acquisitionis a WintrissOpsis1300cam-
erawith resolutionof 1524� 1012pixels,fit with a 28mm
lens, for an effective field of view of about 18 degrees
horizontallyand15 degreesvertically. Thehemispherical
tiling to be acquiredis specifiedprogrammaticallyby the
user. By choiceof opticsandtiling pattern,wecanachieve
nearlyany conceivablesamplingdensityon thesphere,at
thecostof courseof longeracquisitiontimesfor mechani-
cal slew, shuttering.Figure1 depictsthe258-imagetiling
usedfor themosaicsandI/O in this paper.
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High dynamic range imagesare acquiredusing five
bracketing exposuresas in [5]. This is performedauto-
matically at eachtiling orientationthroughprogrammatic
cameracontrol.Theacquisitionplatform(Figure6) is also
equippedwith GPSreceivers,wheelencoders,andinertial
navigationsensorsto provideaninitial 6-DOFestimateof
absolutepose(exterior cameraorientation)for eachnode
[6]. Only therefined3-DOForientationestimatesareused
in thispaper. Refined3-DOFtranslationestimatesareused
elsewherein thesystemfor 3D reconstructionandoff-node
viewing.

3 Mosaicing
Thesensoractuationandinertial unit providegood,but

not perfect,annotationsof rotationfor eachimage.These
are typically good to abouta degreeor so, whereaswith
our opticsand imageresolutionpixel-perfectregistration
requiresorientationknown to about a sixtieth (one arc-
minute)of a degree.

To refinerotationestimateswithin anode,anautomatic
sphericalmosaicingalgorithmis used,basedon maximiz-
ing a denseinter-imagecorrelationfunction[3]. Thealgo-
rithm assumesapproximateinitial rotation estimatesand
sufficientoverlapbetweenadjacentimagesto drivetheop-
timizationto aglobalminimum.

A coarse-to-fineapproachis employed in which pose
estimatesfrom mosaicinglow resolutionimagesareused
to bootstrapthe optimizationof higherresolutionimages.
The algorithm representsimagerotationsasquaternions,
which aresubsequentlyusedby the viewing algorithmto
efficiently performaprojectionof eachimagepoint to 3D.
Theoutputof themosaicingstageis a rotationfor eachin-
put imagewhich relatesthatimageto baseimagefor each
node.

The imagedatasetpresentedin theseexperimentswas
approximately900MB.This largeamountof datapresents
a challengein performinga nonlinearoptimizationbased
ondensecorrelationof pixels.This is compoundedby mo-
saicingmethod’suseof luminanceandderivative informa-
tion for eachpixel. To mosaicthisdataset,theoptimization
wasmodifiedto improvebothits memoryfootprintaswell
asthe schedulingof computationandI/O. Sinceadjacen-
ciesbetweenimagesareknown beforehand,thealgorithm
computescorrelationinformationonthecurrentpairof im-
ageswhile pre-fetchingthenext setof requiredimagesinto
memory. A dedicatedmemorymanagerbacksout image
derivative andluminanceinformationto disk whenmem-
ory is at full capacity. This preventshaving to recompute
imageinformationeachtime an imageis swappedout to
disk. This also requiresa large amountof swap space,
aboutfour timesthesizeof theinputdataset.If swapspace
runsout, the memorymanagerwill remove the imagein-
formationondisk,andrecomputethederivativesandlumi-

nancethenext time theimageis used.
Total time to mosaic the 900MB dataseton a four-

processor200MhzPentium-Prowith 1GB of RAM is ap-
proximately17CPUhours.

4 Viewing
Wedesignedandimplementedaviewerto inspecthigh-

resolutionmosaicsamplespixelsfrom theoriginal images
at interactive rateswith a modifiedform of raycasting.Al-
thoughthe viewer cannotview full- resolutionmosaicsat
full framerate, it cantradeoff smoothlybetweenquality
andupdaterate,a significantadvantagefor interactivity.

4.1 Overview
Every samplein the view originatesfrom oneor sev-

eralsourceimages.This guaranteesthat thenodemaybe
sampledto thesameresolutionastheoriginal imagespro-
vided,allowing veryfinedetailto beobserved.Thisavoids
limitationsthatwouldotherwisebeimposedby underlying
hardware.For example,ourgraphicsengineallowsamax-
imum texturemapsizeof 2048x1024pixels. Evena node
acquiredwith ourordinaryopticscontains46 images,each
with 1524� 1012pixels. Thuswith a direct samplingap-
proachwe have accessto 34 timesthe datathathardware
texture mappingwould allow. In a high-resolutionnode
thismultiplier exceeds200.Thisbecomesapparentin Fig-
ures3 and5 wherea large portion of an indoor lobby is
shown, and thenan object inside the sceneis magnified.
Detailsassmallasmillimetersat a distanceof ten meters
canberesolvedin this node.Theothermainadvantageof
ourraycastingapproachis thatper-pixel operationsmaybe
appliedon thefly, in contrastto graphicshardwarewhich
appliesoperationsper vertex, theninterpolatesto interior
pixels. This allows for sucheffectsasblendingbetween
multiple imagesto obtain a final pixel value; seamlessly
integrating low-resolutionand high-resolutionimagesto
useextra memoryonly in areasthatneedit; andadjusting
theviewer’s visualresponsefunctionfor viewing high dy-
namicrangeimagesinteractively (i.e., without imagepre-
processing).

4.2 A Raycasting Method
Theviewer, in its simplestform, takesauser-controlled

view directionandfield of view andrasterizesit onto the
screen.For eachviewport pixel, a ray is calculatedfrom
theopticalcenterof thenodeto thecorrespondingpointon
theviewport, thenextendedout into space.The raycaster
thendeterminesthe radiancealongthatpixel basedon its
direction. This involvesdeterminingwhich imageor im-
agesthatrayintersects,calculatingthepointoneachimage
in imagecoordinateswheretherayintersectsit, andfinally
performinga weightedaverageof thecolor from eachim-
agebasedon thedistancefrom theray to thecenterof the
image,asdescribedin [7], [1]. This entirecalculationis
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Figure 1. Visualizationof 258imagefrustum:(a) theFOV for eachimage;(b) wireframeof overlappingfrusta.

enclosedin a nestedsetof for loopsthat scansthrough
eachline andeachpixel within thatline, andcanbeeasily
incrementalizedandparallelized.

To speedthe calculationof the ray, an incrementalap-
proachis used.First, theray to thelower-left cornerof the
viewport is determined(correspondingto pixel (0,0)of the
viewport). A raystart is constructedfrom theeye to the
point. Next two deltavectors,dx anddy, areconstructed
to incrementthe startingvectorin the screenx andy di-
rections.Finally, at thestartof eachline, the view vector
is setto start + dy*j (wherej is therasterindex). It
is thenincrementedaftereachpixel calculationby adding
dx. Next, theimageor imagesthattheray intersectsmust
be determined.The naive approachto this problemis to
simply project the ray onto the planein which eachim-
ageis located,thencheckthat the point of intersectionis
within thebordersof theimage.Thisis efficientfor asmall
numberof images,but asthenumberof imagesin a node
increasesit becomeswasteful. Sincethis operationmust
be performedonceper pixel, it mustbe as fastaspossi-
ble to allow interactive inspection. To speedthis search,
a preprocessingstagesubdividesspacein a treestructure,
andkeepspointersto theimagesthatintersecteachregion.
Thestructureis built by adaptiverefinementof thetriangu-
lar facesof an initial (full-sphere)octahedron(Figure2),
not unlikequad-treeor ��� -treedatastructures[4].

4.3 Ray Location Data Structure

During the preprocessingstage,a subdividableImage-
Branchrecordis instantiatedfor eachtriangle.This record
keepstrackof all imagesthat fall within its associatedtri-
angularregion. The preprocessorpassesall input images
to eachof the eight ImageBranches.If a branchcontains
the image,it is addedto the branch’s internal list. Once
thenumberof imagesreachesaconstantthreshold,theIm-
ageBranchsubdividesinto foursmallerequally-sizedtrian-
gles,passingits storedimagesto its children.Theresulting
structurecanbesearchedwith ���
	���
�� regioncomparisons
ratherthan ����
�� , giving a largereductionin computation
andincreasein viewing speed(or quality for fixedspeed).

Many of thevaluesneededfor theray-triangleintersec-
tions usedin this searchcanbe pre-computed,giving an
additional time savings. The structureis built suchthat
eachray is passedto thetoplevel,whichdetermineswhich
of eightbranchesto search.A ray canbeplacedinto one
of theseregionsusingthreecomparisons(onefor eachdi-
rectionalcomponent)with zero. The ray is passedto that
branch,which determinesif it containstheray. If it does,
the branchsearchesits (short) list of imagesfor intersec-
tions,or passestheray to its four children.Theprocessis
repeatedrecursively until imageintersectionsarefound,or
nonearefound. The queryreturnsa list of imagesinter-
sectedby theray, if any.
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Figure 2. Thedatastructurefor rapidray locationin the
sphericaltiling.

Oncetheimagesintersectedby theray areknown, pix-
elscanbesampledin eachimage.Eachimagehasanasso-
ciatedtransformationmatrixspecifyingits projectionfrom
the nodeorigin (optical center). The ray is projectedby
this matrix, resultingin a point ������������� that canbe used
to index into the actual imagedataas ��� ������ � . The radi-
ancevaluefrom eachimageis thenweightedinverselyby
its distancefrom the centerof the image,and the values
areaddedanddivided by the total weight. Vignettingef-
fectswhichoccurredduringimageformationarecorrected
duringtheaquistionprocess.

4.4 Optimizations
Three modifications were made to optimize perfor-

mance.

4.4.1 Precomputing weights

First, thepixel weightsdependonly on �!�"� index, not on
the imageitself, so they canbe pre-computedandstored
in an array. The appropriateweight can be accessedby
thesameindex usedto readtheradiancesamplefrom the
image. This approachincreasesspeedat thecostof addi-
tionalmemoryusage,anacceptabletradeoff whenrespon-
sivenessis of primary concern. If all imagesareguaran-
teedto have the samesize,a singlesetof weightscanbe
calculatedat thebeginningof time for usewith all images;
otherwiseaper-imagearraycouldbeused.

4.4.2 Exploiting continuity

Thesecondimprovementcomesfrom noting that, in gen-
eral, adjacentpixels comefrom the sameimage. Addi-
tionally, the transformationto imagespaceis expensive,
so an incrementalmethodof finding the next pixel is de-
sirable. Both of theseareaddressedduring the sampling

stage.Whentheray transformationis performed,anaddi-
tional ray throughthenext pixel is alsotransformed.Since
this is effectively a perspective transformation,distances
arenotpreserved,soasimpledeltabetweenpixelswill not
yield properresults. However, the � valueis recordedas
well, andby storingthe deltafor � , � , and � , the viewer
canincrementall of themacrosstheimage.Usingthis in-
crementalvaluein eachimage,a count is determinedfor
the numberof samplesleft beforean edgeof the image
is reached.The top-level loop canthensimply increment
eachpixel locationandsampleeachimageuntil thecount
reacheszero.At thatpoint, it mustagainfind theimageset
to be sampled,by appealto the ImageBranchdatastruc-
ture. This reducesthe numberof ray-imageintersection
searchesfrom onceto pixel to onceper imageedgeinter-
sectedperscanline. Sinceeachimagetypically spansbe-
tweenaneighthanda fourth of theviewing area(or more
whenthefield of view is quitewide),a full searchmustbe
performedonly a few timesperscanline.

4.4.3 Parallelization

Thefinal optimizationis to split theraycastingtaskamong
morethanoneprocessoron a multiprocessormachineus-
ing pthreads. Two mainstructuresfacilitatethis. First,
a RaycastInforecordis createdfor eachscanline of the
viewport, encapsulatingall of the information neededto
calculateone line of the image, including the ray point-
ing to the beginning of the line, thedx vector, a pointer
to theline of theoutputimage,andvariousotheraccount-
ing information.Next, therecordis addedto a thread-safe
queue. Worker threadswait on a semaphoreuntil a line
is available for processing.Oncea line is available, the
acquiringthreadremovesit from thequeueandprocesses
the line. When done, it delivers the renderedrasterand
againwaits on thequeue.This producesan improvement
in frameratewhich is nearlylinearin thenumberof avail-
ableprocessors.

4.5 High Dynamic Range
Theraycasterdescribedabovecanuseanarbitrarynum-

berof imagesof arbitraryspatialresolution,but is limited
in its reproductionof a nodedueto physicallimitationsof
thecamera– digital camerashave a very limited dynamic
range(typically seven bits or so) – and of the computer
graphicsdisplay. The location of this rangecan be ad-
justedby changingthe exposuretime on the camera,but
a singleimagecannotcapturedetail in both shadows and
verybrightareas.A trial nodewascapturedatmultipleex-
posuresettings,andtheresultswerecombinedto produce
a radiancemapthat reflectsthe true brightness(radiance)
of every pixel up to a singleabsolutescale[5]. This map
wasthencompressedusinga logarithmicscaleinto 24-bit
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Figure 3. Figure(a)wideangleview (b) narrow field of view, zoomed.Thedottedlinesin (b) denoteimageboundaries

pixels,but retainingthe full dynamicrange. For eachra-
dianceimageminimumandmaximumradiancevaluesare
stored,allowing conversionto trueradiancevalues.

In addingradiancemapsupportto our viewer, onegoal
wasto adjustthedisplayedrangeandvisualresponsefunc-
tion on the fly. This precludesmappingeachimagewith
theappropriatevisualresponsefunctioneachtimetheuser
adjustsgamma.Also, becauseof theuseof logarithmsin
both thedecodingandvisual responsefunctions,it would
beprohibitively slow to converteachpixel asit is sampled.
The solutionwas to keepthe imagesin their logarithmi-
cally compressedform, andgeneratea 256-entrylookup
tablefor eachimagewhich convertseachchannel��#$�"%��'&'�
to the appropriatevalue. Theselookup tablesmustbe re-
generatedeachtime the userchangesthe responsefunc-
tion or dynamicrange,but they containonly 256 entries,
insteadof overamillion pixels.In thedecodestage,asim-
ple tablelookup is performedperchannelperpixel, caus-
ing aminimalperformancehit. As canbeseenin Figure4,
detailsin theshadowsof MIT’ sLobby 7 arevisible,while
with adifferentgammathecloudsoutsidethewindowsare
visible, thoughit is a bright sunny day. Theimagecanbe
viewedwith acompresseddynamicrangesothatall values
arevisible at once,or the rangecanbeexpandedto bring
outdetail in oneparticularsegmentof therange(at theex-
penseof saturatingregionsthatarebrighteror darker than

thetargetregion).

5 Conclusion
We describedan actuatedcamerarig andcontrol sys-

temfor capturingsphericalmosaicswith highspatialreso-
lution andhighdynamicrange.Thedatais viewedwith an
optimized,adaptive, parallelizedsoftwareviewer that re-
quiresonly anordinaryCPUandframebuffer, but no spe-
cialized graphicshardware. The viewer smoothlytrades
off betweenimagequality and framerate. Overall these
elementsprovide a novel capability for capturingandin-
spectinghighfidelity sphericalimagery.

Futurework includesimprovementof themodelingand
useof thevisualresponsefunction. Currently, usersinter-
activelyspecifyangammato modify thecontrastin theim-
age.Oneapproachwould beto try andadaptively change
the gammaas the viewer navigatesthe mosaic. Another
avenuefor futurework is to betterhandlehighcontrastim-
ages,asdescribedin [9]. This posesa challengedue to
therequirementof a real-timeresponsefor a largeamount
of data. Furthermore,asthe uservariesthe field of view,
the displayeddynamicrangefor the currentview should
changecontinuously.
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Figure 4. Figures(a) long exposureand(b) shortexposure
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Figure 5. Figure(a) wideangleview (b) narrow field of view, zoomed

Figure 6. Diagramof theacquisitionplatform
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