
0272-1716/01/$10.00 © 2001 IEEE

Rendering

IEEE Computer Graphics and Applications 1

The realistic modeling of vegetation is an
important problem in computer graphics.

Vegetation adds a significant dimension of realism to a
scene. Trees, in particular, form an integral part of archi-
tectural landscapes. Many techniques1, 2–4 and modeling
packages (for example, Tree Professional Software and
MaxTrees) have been developed for constructing a tree
of a particular type. However, variations between two
trees of a single type can be very significant, depending
heavily on factors ranging from growth conditions (such
as the amount and direction of sunlight reaching the
tree) to human intervention (such as pruning branch-
es). Sometimes you want to create a 3D tree model
resembling a specific tree. Such a need might arise, for
example, in planning modifications to an existing archi-
tectural scene; modeling proposed changes requires a
faithful model of the existing scene. The techniques and
packages currently available don’t provide sufficient con-
trol over the final shape and appearance of the model to
be useful for reconstructing specific trees. Thus, we pro-
pose a solution for reconstructing a faithful 3D model of
a foliaged tree from a set of instrumented photographs.

Scientific interest
Procedural techniques have been widely used to gen-

erate detailed 3D models.5 Their power lies in having a
high database amplification factor, or their ability to gen-
erate a wide range of complex structures from a small
set of specified parameters. However, because of the
nature of their power, the procedural models are hard to
control, since a small perturbation in the parameter
space results in a significant change in the resulting struc-
ture. Perhaps this is the reason that little work has been
done on inverse procedural models—namely, forcing a
procedural model to reproduce an entity that already
exists. Because it’s difficult to control procedural mod-
els, an approach to construct an inverse procedural
model by a parameter space search appears intractable;
hence, other techniques need to be developed.

In a recent work,6 Sakaguchi recognizes the power of
the procedural growth models, but points out that the
difficulties of accurately inferring parameters of such a
model has driven him to develop another, unrelated
approach. Sakaguchi seeds small branches around the

tree’s 3D shape, then gradually merges them together
into larger branches. Because this procedure yields a
number of undesirable artifacts, he corrects them using
a number of heuristics. While this approach has pro-
duced some reasonable results, it can’t be connected
easily to the highly developed field of procedural mod-
eling of vegetation. By contrast, our approach aims to
extract enough information from a set of images to let a
procedural model be used.

In this article, we propose a hybrid
approach to solving the inverse prob-
lem of reconstructing a foliaged tree.
Our method involves first construct-
ing the skeleton (trunk and the major
branches) of the tree, and then apply-
ing an L-system starting from this
skeleton. L-systems are one of the
better-known procedural models in
the graphics community, especially
after their popularization by Linden-
mayer and Prusinkiewicz.7 The
“Related Work” sidebar provides
some background on L-systems.

Approach
Structurally, trees are immensely complex. With that in

mind, we can only hope for a reconstruction scheme that
produces a similar tree which, although it differs signifi-
cantly from the original in structure, nevertheless retains
its overall impression. This is the reason we’ve restricted
the scope of this project to foliaged trees: it’s hard to repro-
duce the impression of an unfoliaged (winter) tree with-
out achieving a high-fidelity structural reconstruction of
its branching system. With foliaged trees, however, a plau-
sible branching structure suffices to preserve the overall
impression of the original, since we can’t see the original
branches. Observing a foliaged tree, we infer an intuitive
branching structure from the shape of the foliaged tree
and our knowledge of trees in general. This process serves
as the motivation for our approach.

Despite the excellent results on synthetic L-systems’ top-
iary in Prusinkiewicz et al.,8 in which bushes are grown
and pruned to fill predefined shapes bushes are only
remotely related to trees. The impressions produced by a

Our computer modeling

technique reproduces a

tree’s 3D volume and

skeleton from instrumented

photographs. The technique

grows the remainder of the

tree with an L-system.

Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and
Seth Teller
Massachusetts Institute of Technology

Reconstructing 3D
Tree Models from
Instrumented
Photographs



tree and a bush similarly shaped are quite dissimilar. On
the other hand, our attempts to infer the L-systems para-
meters to grow a tree inside a predefined shape have been
unsuccessful because, as we previously stated, the large
database amplification factor makes a parameter space
search intractable. Often the resulting tree’s branches
didn’t reach several important regions of the shape, espe-
cially those connected to the trunk by narrow passages.

For these reasons, our approach infers the tree’s
major structure (the trunk and the first few levels of
branching) directly from the tree shape. This direct
approach ensures that the branching structure is plau-
sible for the given tree. Once we know the major
branching structure, we use it as the axiom (initial
string) of an L-system. The effect is to have the L-sys-
tem continue growing the tree starting from the given
skeleton. The L-system adds lower order branches and
leaves. A pruning module built into the L-system pre-
vents growth outside the 3D tree volume. The result is
a reconstructed tree of the specified shape.

System details
The reconstruction process consists of four stages

(see Figure 1). The input to the system is a set of images
of a tree, usually numbering between 4 and 15 and uni-
formly covering at least 135 degrees around the tree.
We assume that the camera’s pose (relative position
and orientation—for example, see Horn9) for each
image is known.

Stage 1: Image segmentation
As a first step, the input images must be segmented

into the tree and the background. We developed a pre-
liminary version of a tree-specific segmentation algo-
rithm, but at this point it’s not sufficiently robust for
actual tree reconstruction. (Recently, an automated seg-
mentation algorithm was proposed.10) Consequently,
we segmented the images manually by outlining the
foliaged tree region in a graphics editor. This procedure
only takes a few minutes per tree and is by no means a
bottleneck of the reconstruction process.

Stage 2: Visual hull construction
Stage 1 produces a silhouette (or outline) of the tree

in the original photo. In stage 2, we use these outlines,
together with pose information for each image, to com-
pute a mesh approximation to the 3D tree shape. We’ll
use this mesh to infer the skeleton (major branching
structure) of the tree in stage 3 of the algorithm.

We approximate the tree shape by approximating the
visual hull11 of the tree. A visual hull of an object is a struc-
ture containing the object such that no matter from
where you look, the silhouettes of the visual hull and the
object coincide. Note that the visual hull can’t capture
some of the details of the tree shape. For instance, small
indentations in a purely spherical shape can’t be mod-
eled, since silhouettes in all photographs are still circu-
lar. Nevertheless, the visual hull captures most of the tree
shape appearance-defining elements. Other approach-

Rendering

2 May/June 2001

Related Work
In 1968, Lindenmayer proposed L-systems to provide a

formal description of simple multicellular organism
development. Since growth in the plant kingdom is
characterized by self-similarity and, as a result, a high
database amplification factor inherent to L-systems, the
model was later extended to higher plants.1,2–5 Because
environmental effects influence plant appearance, the L-
systems model evolved into open L-systems (in
Prusinkiewicz et al.4 and Mech and Prusinkiewicz6). In both
instances, the researchers let the developing plant model
interact with a model of its environment. (See Mech and
Prusinkiewicz6 for a more detailed overview of the L-
systems’ evolution.) An L-system is a parallel string rewriting
system, in which a simulation begins with an initial string
called the axiom, which consists of modules, or symbols
with associated numerical parameters. In each step of the
simulation, rewriting rules—or productions—replace all
modules in the predecessor string by successor modules.
The resulting string can be visualized, for example, by
interpreting the modules as commands to a LOGO-style
turtle. Even very simple L-systems are able to produce
plant-like structures. Figure A shows an example of an
interesting L-system with only two productions.

References
1. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of

Plants, Springer-Verlag, New York, 1990.

2. P. Prusinkiewicz, A. Lindenmayer and J. Hanan, “Developmental
Models of Herbaceous Plants for Computer Imagery Purposes,”
Computer Graphics, vol. 22, no. 4, Aug. 1988, pp. 114-150.

3. D. Fowler, P. Prusinkiewicz, and J. Battjes, “A Collision-Based
Model of Spiral Phyllotaxis,” Computer Graphics, vol. 26, no. 2,
July 1992, pp. 361-368.

4. P. Prusinkiewicz, M. James, and R. Mech. “Synthetic Topiary,”
Computer Graphics (Proc. Siggraph 94), ACM Press, New York,
1994, pp. 351-358.

5. P. Prusinkiewicz. “Visual Models of Morphogenesis,” Artificial Life:
An Overview, C.G. Langton, ed., MIT Press, Cambridge, Mass.,
1995, pp. 67-74.

6. R. Mech and P. Prusinkiewicz, “Visual Models of Plants Interact-
ing with Their Environment,” Proc. Siggraph 96, ACM Press, New
York, 1996, pp. 397-410.

A A basic L-system. The first rule directs the elongation of
existing branches with time. The second rule allocates the
creation of new branches from a bud, and the development of
new buds on the existing branches.



es—such as shape from shading9—might allow more
accurate reconstruction, but for our purposes, the sim-
pler silhouette-based approach seems sufficient.

The general technique used for reconstructing the
visual hull is volumetric intersection.11 The tree silhou-
ette in each image is approximated by a simple polygon.
Backprojecting the edges of this polygon yields a cone—
a 3D shape containing all world rays that fall inside the
polygonized tree silhouette. Each cone restricts the 3D
tree to lie inside it, so by computing the 3D intersection
of all cones, we get an approximation to the 3D tree
shape. We depict this process in Figure 2.

In its simplest form, the visual hull reconstruction
algorithm runs as follows:

PolygonizeSilhouettesInAllPhotos();

ShapeSoFar = BackprojectSilhouette

(FirstSilhouette);

for Silhouette in

RemainingSilhouettes

ShapeSoFar = Intersect

(ShapeSoFar,

BackprojectSilhouette

(Silhouette));

ApproxVisualHull = ShapeSoFar;

The algorithm’s running time is dominated by the Inter-
sect step.

Intersecting general 3D polyhedra is a time-consum-
ing operation. However, a backprojected silhouette (a
cone) isn’t a general 3D polyhedron—being a direct
extrusion of a simple polygon, it carries only 2D infor-
mation. This observation lets us perform the intersec-
tion in 2D rather than 3D, with significant performance
gains. The initial ShapeSoFar is still constructed by back-
projecting the silhouette from the first photograph. Sub-
sequent silhouettes are intersected as follows: instead of
backprojecting the silhouette and intersecting it with
ShapeSoFar in 3D, ShapeSoFar is projected into the sil-
houette’s plane, intersected with the silhouette, and the
intersection unprojected back into 3D to create the next
ShapeSoFar.

ShapeSoFar is represented as a collection of simple
polygons (not necessarily convex) together with adja-
cency information. At each step, we intersect ShapeSo-
Far with the next cone—in other words, we determine
the portion of ShapeSoFar that lies inside the next cone.
In terms of the boundary representation that we use,
this amounts to deciding—for each of ShapeSoFar poly-
gons—whether it’s completely inside the next cone,
completely outside, or partially inside and partially out-
side. In the latter case, we need to determine the por-
tion that’s inside. The specific procedure is as follows:

For each Poly in ShapeSoFar polygons

Project Poly into the plane of the

Silhouette

If the projected Poly’s boundary

intersects the Silhouette’s

boundary:

1. Intersect, in 2D, the

projected Poly with the

Silhouette

2. Backproject the pieces of

Poly falling inside the

Silhouette onto the original

Poly to find parts of Poly

falling inside the

corresponding cone

We illustrate this process in Figure 3.
Each of the remaining polygons of ShapeSoFar is

either entirely inside or outside the cone. We use adja-
cency information to find the inside polygons. During
the cutting of projected ShapeSoFar polygons in the pre-

IEEE Computer Graphics and Applications 3

2 Reconstruction of tree shape by silhouette extrusion.

Image
segmentation

Visual
hull

construction
Skeleton

construction

L-system

(a) (b)

(d) (e)

(c)

1 System diagram. Each of the input images (a) is segmented into the tree
and the background (b), and the silhouettes are used to construct the
visual hull (c). The system constructs a tree skeleton (d) as an approxima-
tion to the medial axis of the visual hull, and we apply an L-system to grow
the small branches and the foliage (e).



ceding step, we encounter edges of the original Shape-
SoFar falling entirely inside the cone. Starting at each
such edge, we perform a flood-fill among uncut poly-
gons to reach all polygons falling completely inside the
cone. This idea was taken from IRIT, a computational
geometry package written by Gershon Elber.

At this point, we’ve determined all polygons that will
make up the next ShapeSoFar, except for polygons cut
from the sides of the cone by ShapeSoFar. (Each side of
the cone corresponds to one backprojected segment of
the silhouette.) Since we have already determined all
edges of the new ShapeSoFar, we can now use the adja-
cency information to trace out polygons required to
close the model.

Stage 3: Constructing a plausible tree skeleton
A tree skeleton, as we define it, is the trunk of the tree

and the first few levels of branching. We construct a
plausible tree skeleton by finding an approximation to
the medial axis of the tree’s visual hull.

The medial axis (see Ogniewicz and Kübler12) of a 3D
object A is defined as a set of points inside of A, with the
following property: for each point in the medial axis,
the largest sphere contained in A and centered at that
point is properly contained in no other sphere contained
in A. Intuitively, the medial axis often corresponds to
the shape’s skeleton. See Figure 4 for a simple example
of the 2D analog of the medial axis, where spheres
become circles.

As its name suggests, the medial axis in some sense
always traverses the middle of the object. For this rea-
son, we believe that a tree shape’s medial axis makes a
plausible skeleton for that tree. Also, it’s likely to be some-
what similar to the original skeleton for several reasons.

Trees sustain themselves by converting the sunlight
that reaches their leaves into photosynthates, which
then propagate from higher order to lower order branch-

es, eventually reaching the trunk.13 Since each branch
costs the tree energy, most trees’ branching structures
are such that their branches reach the largest possible
space in the most economical way. These observations
suggest that the tree skeleton’s structure resembles the
medial axis of the tree’s shape, which is, in some sense
of economy, the optimal skeleton.

To construct an approximation to the medial axis, we
use an algorithm from Teichmann and Teller14—part of
a system originally designed for constructing the skele-
tons of characters for animation. The system takes a
closed polygonal mesh as input and approximates its
Voronoi diagram, retaining only the Voronoi nodes,
which fall inside the mesh. Users then manually fix a
number of Voronoi nodes, indicating the points that they
want present in the resulting medial axis approxima-
tion. The algorithm enters a loop and on every pass it
removes one Voronoi node from every biconnected com-
ponent of the modified Voronoi diagram; the nodes ini-
tially marked aren’t removed. This continues until no
biconnected components remain. (A biconnected com-
ponent of a graph has the property that if any one of its
edges is removed, the component remains connected.)

Our extension to the algorithm automatically fixes a
set of Voronoi nodes, which should correspond intu-
itively to major branch tips, as well as the bottom of the
trunk. The algorithm obtains these by first finding inter-
esting vertices (those corresponding to major branch
tips) in the 2D images, then backprojecting them and
finding the intersections of backprojected rays to deter-
mine interesting points on the 3D visual hull. This auto-
mated process replaces the manual step in Teichmann
and Teller.14

In 2D, the system makes a list of candidate interesting
vertices out of the vertices of the convex hull of the tree
contour and the even-order convex hulls (or even-level
nodes of the convex difference tree15). We obtain an nth
order convex hull by computing the convex hull of a set
of contour vertices that lie between any two successive
vertices of the n − 1st order convex hull (see Figure 5,
next page,  for an example). We consider the whole con-
tour’s original convex hull as the 0th order.

Of the candidate interesting vertices, interesting ver-
tices are chosen according to the following heuristics:
vertices where the convex hull makes a sharp angle or
vertices adjacent to an interesting edge. Interesting edges
are long (relative to the total hull perimeter) or cover
deep pockets. A pocket covered by a hull edge is the part
of the boundary between the endpoints of the edge. In
Figure 6, points on the tree outline between hull vertices
A and D form the pocket under the hull edge AD. The
depth of a pocket is the maximum distance between the
hull edge and a pocket point; in the figure, it’s the dis-
tance between point C and edge AD. All these heuristics
ensure that there can’t be many interesting vertices. We
select a fixed fraction of the points ranked according to
these heuristics; taking the best 30 percent of the points
typically produces reasonable results. As an optimiza-
tion, the algorithm considers next-level hulls only for
interesting edges of the previous level hull; in the figure,
the second-order hull based on the first-order hull edge
BC isn’t considered, as the edge BC isn’t interesting. Fig-

Rendering

4 May/June 2001

3 A ShapeSoFar
polygon is
projected into
the plane of the
new silhouette.

4 Medial axis of
a 2D figure
(punctured
line), shown
with some of
the maximal
circles. 



ure 6 shows a sample output of the selection algorithm.
Once these interesting 3D points are found, the

Voronoi vertex closest to each 3D point is found and
marked for fixing by the medial axis approximation algo-
rithm. The markings direct the algorithm to preserve
these points as it successively removes Voronoi nodes
closest to the visual hull’s boundary. The algorithm then
runs and obtains an initial skeleton. However, this initial
skeleton doesn’t cover the space inside the visual hull
sufficiently for L-systems to be applied successfully. The
initial skeleton is then extended by a second pass of the
algorithm from Teichmann and Teller,14 in which all the
Voronoi nodes belonging to the initial skeleton are fixed,
as well as other Voronoi nodes taken from regions of the
visual hull poorly covered by the initial skeleton. This
produces the effect of adding another level of branch-
ing to the initial skeleton.

At this point, we have a tree skeleton consisting of
the trunk and the first few levels of branches, reaching
into all areas of the tree. The stage is now set to apply
the L-systems.

Stage 4: L-systems
The tree skeleton from the preceding step is written

out as an axiom to an L-system, in such a way that the
last two levels of branches are endowed with buds,
allowing for further levels of growth. We now apply an
open L-system for tree growth corresponding to the type
of the input tree, which communicates with two envi-
ronmental processes. The first process ensures that the
resulting tree’s shape resembles the input tree; the sec-
ond increases botanical fidelity of the branching pattern
and leaf distribution.

The first environmental process prunes the branches
that reach outside the tree shape in the course of their
growth. The last branch segment is deleted and a new
bud appears at the end of the freshly pruned branch.
The new bud’s parameters are selectedvy the first envi-
ronmental process so that the branch that will grow out
of it on the next iteration of the L-system will be short-
er than the currently pruned branch by a constant fac-
tor defined in the L-system.

The second environmental process computes the
amount of sunlight reaching each leaf in the tree. The
process augments the mechanism for modeling com-
petition for sunlight and the flow of photosynthates
inside the tree that’s implemented in the L-system. The
amount of sunlight reaching each leaf is converted into
a quantity of photosynthates, which then make their
way up from the thinner branches to thicker branches
and, eventually, the trunk. On the way, each branch col-
lects a toll, corresponding to the amount of energy that
it needs for maintenance. If a branch doesn’t get enough
energy, it’s deleted (provided that it’s small enough; we
don’t want to destroy a significant portion of the tree).

An L-system iteration corresponds to a single year of
tree growth. In the course of an iteration, buds grow into
branches with new buds on them, and the system
prunes branches outside of the tree shape, computes the
photosynthates’ flow, and withers and deletes small
branches that don’t get enough energy; finally, the sys-
tem recomputes branch thickness to take into account

any new branches.
The L-system runs for several iterations, so as to suffi-

ciently fill the space inside the visual hull with foliage.
Determination of the number of iterations isn’t fully auto-
mated in our system, but in our experience it takes three
or four L-system iterations to grow the tree to the desired
thickness of foliage. It’s safer to overgrow the tree than
to undergrow it, since after the L-system is done, leaves
can be removed via the procedure outlined below.

Once the L-system simulation finishes, colors are
mapped back to the leaves from the original images. With
each leaf there’s an associated set of colors, consisting of
the colors corresponding to the leaf in every image of the
image set. When the user views the model, the system
chooses the displayed leaf colors depending on which
image’s viewpoint is closest to that of the user. In this way
we can obtain a consistent coloring of the foliage.

If a mapped-back color from any of the images clear-
ly doesn’t belong to the tree, the leaf is deleted. This usu-
ally corresponds to an opening in the thin foliage where
the sky or a background wall shows through. We discuss
other possible methods of reconstructing foliage densi-
ty in the “Future work” section.

As should be expected, the L-system model contains
a number of parameters that are tree-type specific, such
as leaf tropism factor, branching angles, and leaf shape.
Being able to modify the appearance of the final result
by varying model parameters is an important feature of
our approach (as compared to Sakaguchi6). 

IEEE Computer Graphics and Applications 5

6 A sample output of the automat-
ic selection algorithm. Voronoi
nodes near the red points in the
figure will be marked for the medial
axis approximation algorithm.

5 Determining interesting 2D
vertices. ABCD is a first-order con-
vex hull and CID is a second-order
convex hull. I is an interesting vertex
on an even-order convex hull and
corresponds to a visible branch tip.



Results
Here we discuss (and show) different results from our

approach:

� Visual hull construction. Figure 7 shows an example
of a reconstructed visual hull. The hull was recon-
structed automatically from six correlated views. Typ-
ically, four views spaced sufficiently far apart suffice
to capture the major features of the shape; subsequent
views serve as refinements.

� Tree skeleton reconstruction. Figure 7 shows three
examples of tree skeletons our system constructed.

As you can see, the reconstruction isn’t entirely faith-
ful, especially in the details. Nevertheless, the skele-
tons do reach into every major part of the tree. This
property is critical for the subsequent step of grow-
ing an L-system from the reconstructed skeletons.

� Tree reconstructions and novel views. Figures 8 and 9
show three reconstructed trees, along with the orig-
inals for comparison. Figure 10 shows novel views
for the reconstructed trees. The reconstructed tree
types are maple, sassafras, and ash. All are typical
broadleafs. We expect the reconstruction procedure
to apply equally well to evergreens, but an evergreen-

Rendering

6 May/June 2001

7 Three examples of tree skeletons constructed by
finding an approximation to the medial axis of the tree
shape. The L-system computes the branch thickness.

8 Comparison of (a) reconstructed 3D model A to 
(b) the original tree. The viewpoints are the same.

(a) (b)

9 Comparison of (a) reconstructed 3D model B to (b)
the original tree, and (c) reconstructed model C to (d)
its original. The viewpoints for each pair of views are
the same.

(a) (b)

(c) (d) 10 Views from angles not represented in the original
photo set, synthesized using the reconstructed 3D tree
models. (a) and (c) are novel views of the tree from
Figures 9a and 9b. (b) and (d)  are novel views of the
tree from Figure 8.

(a) (b)

(c) (d)



specific L-system would likely be required in the final
reconstruction step.

� Detail views. Figure 11 shows several detail views of
the branching and foliage generated by the L-system,
with colors assigned by our algorithm. The rendering
was done in OpenGL from an Inventor scene graph.

System timing
Table 1 shows a time line for reconstruction of a sin-

gle tree. Since the variations in timing aren’t sufficient-
ly large to warrant supplying a time line for each
reconstructed example, a single annotated time line
should suffice.

Discussion
We’ve proposed a solution to a difficult inverse prob-

lem: reconstructing an existing foliaged tree from a
small set of instrumented images. In particular, we
employ L-systems, a powerful procedural model. To our
knowledge, this is the first reported use of procedural
models for solving the inverse problem of producing an
object with a given appearance.

In the domain of tree generation, all existing models
fall into one of two broad classes—biology- or geome-
try-based. Biology-based models incorporate biological
constraints on growth, producing botanically correct
trees, but the user has relatively little control over the
final outcome, in particular over shape. On the other
hand, geometry-based models might allow greater con-
trol over final geometry, but botanical fidelity can be dif-
ficult to attain. Our hybrid approach combines the
advantages of these two model types—we can dictate
the overall tree geometry, yet let the model grow most
of the tree without direct control.

While at this point the method isn’t fully automatic,
we believe that its manual steps (segmentatng trees from
the background, selecting tree type, and determining
the number of iterations) are amenable to complete or
nearly complete automation. Our method provides a use-
ful framework, making it possible to experiment with
varying solutions to the individual steps. Eventually, the
reconstruction algorithms described here could be used
to support applications such as architectural planning
and virtual reality simulation.

Future work
Most aspects of our reconstruction framework have

potential for improvement. The most important type of
improvement, applicable at every stage, involves incor-
porating tree-specific knowledge into the algorithm.
Tree type could be determined automatically from shape
and texture analysis, or simply entered by hand.

Automatic extraction of tree outlines from images
would be a major step toward full automation. We’ve
experimented with some basic algorithms exploiting
color and texture information. Better algorithms might
be developed that incorporate knowledge of allowable
tree shapes.

In addition to obtaining the tree outline, it’s useful to
recover foliage density in various regions in the tree.
This information may be used to control the rate of
foliage and branch generation while growing the L-sys-
tem to fill the overall tree shape. Unlike the tree outline,
the foliage density map can’t be easily specified by hand.
However, once the outline is available, determining
foliage density inside the outline becomes a tractable
problem. A separate problem is deciding how to com-
bine 2D density maps from several images into a 3D den-
sity estimate for a particular portion of the 3D tree
volume. The choices here resemble those for mapping
back leaf color—two obvious ones are averaging and
using the nearest photograph.

IEEE Computer Graphics and Applications 7

Table 1. Time line for reconstructing a single tree.

Name of Stage Time Spent Interaction or CPU Time

Segmentation 1 hour* Interaction
Visual hull construction 30 minutes** CPU time
Skeleton construction 2 hours CPU time
L-system growth 40 minutes CPU time
Leaf coloring 10 minutes CPU time
Total interaction 1 hour Interaction
Total CPU time 3 hours 20 CPU time

minutes
Overall total 4 hours 20 Overall

minutes
* Manual filtering takes a maximum of 5 minutes per image. The number of images usually varies from 7 to 14, so the
estimated time of 1 hour includes several rest breaks.
** The timing for this stage also depends on the number of images; 30 minutes is a very loose upper bound.

11 Detail views
of branches and
leaves in a
reconstructed
tree.



The reconstructed skeleton currently depends solely
on the 3D tree shape. The resulting skeleton often differs
greatly from the actual one. Adding constraints based
on knowledge of growth patterns for particular tree
types should mitigate this problem.

The L-system used for reconstruction should be tree-
type specific. For many tree types, L-systems have already
been developed.15 Using a tree-type-specific model
should result in much greater fidelity of reconstruction.
In particular, coloring models incorporating tree- and
season-specific coloring information would permit mod-
eling appearance of the reconstructed tree in varying
lighting conditions at different times of the year.

Finally, no work has been done on reconstructing the
nonfoliaged winter trees. In the case of winter trees, you
can actually see the branching structure, and the prob-
lem is to infer it from the images. In this case, we possess
much more information than in the foliaged case, where
we only had the tree shape; however, the expectations
rise accordingly and a plausible branching structure is
no longer enough. Therefore, we need a completely dif-
ferent approach, based on finding the branches in the
image, backprojecting them, and determining possible
3D structures that fit the images. The problem of recon-
structing nonfoliaged trees is only remotely related to
the corresponding foliaged trees problem. �

Acknowledgments
We’d like to thank Przemyslaw Prusinkiewicz for his

generous L-systems advice and providing us with his
group’s plant and fractal generator with continuous
parameters (CPFG, an excellent L-systems software
package). We’re grateful to Ned Greene, who promptly
replied to our request for one of his papers, and to Neel
Master for his help with determining camera poses. This
work was supported by an NSF Computer and Informa-
tion Sciences and Engineering (CISE) Research Infra-
structure award (EIA-9892229), and by Interval
Research Corporation. 

References
1. W. Reeves, “Particle Systems—A Technique for Modeling

a Class of Fuzzy Objects,” Computer Graphics, vol. 17, no.
3, July 1983, pp. 359-376.

2. N. Greene, “Voxel Space Automata: Modeling with Sto-
chastic Growth Processes in Voxel Space,” Computer Graph-
ics, vol. 23, no. 3, July 1989, pp. 175-184.

3. J. Weber and J. Penn, “Creation and Rendering of Realis-
tic Trees, “Computer Graphics (Proc. Siggraph 95), ACM
Press, New York, 1995, pp. 119-127.

4. R. Mech and P. Prusinkiewicz, “Visual Models of Plants
Interacting with Their Environment,” Proc. Siggraph 96,
ACM Press, New York, 1996, pp. 397-410.

5. F.K. Musgrave et al., Texturing and Modeling: A Procedural
Approach, D.S. Ebert, ed., Academic Press, London, 1994.

6. T. Sakaguchi, “Botanical Tree Structure Modeling Based
on Real Image Set,” Proc. Siggraph 98, tech. sketch, ACM
Press, New York, 1998, p. 272.

7. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants, Springer-Verlag, New York, 1990.

8. P. Prusinkiewicz, M. James, and R. Mech. “Synthetic Top-
iary,” Computer Graphics (Proc. Siggraph 94), ACM Press,
New York, 1994, pp. 351-358.

9. B.K.P. Horn, Robot Vision, MIT Electrical Eng. and Com-
puter Science Series, MIT Press, Cambridge, Mass., 1986.

10. N. Haering and N. da Vitoria Lobo, “Features and Classifi-
cation Methods to Locate Deciduous Trees in Images,”
Computer Vision and Image Understanding, vol. 75, nos. 1-
2, July-Aug. 1999, pp. 133-149.

11. A. Laurentini, “The Visual Hull Concept for Silhouette-Based
Image Understanding,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 16, no. 2, Feb. 1994, pp. 150-162.

12. R.L. Ogniewicz and O. Kübler, “Hierarchic Voronoi Skele-
tons,” Pattern Recognition, vol. 28, no. 3, 1995, pp. 343-359.

13. N. Chiba et al., “Visual Simulation of Botanical Trees Based
on Virtual Heliotropism and Dormancy Break,” J. Visualiza-
tion and Computer Animation, vol. 5, no. 1, 1994, pp. 3-15. 

14. M. Teichmann and S. Teller, “Assisted Articulation of
Closed Polygonal Models,” Proc. 9th Eurographics Work-
shop on Animation and Simulation, ACM Press, New York,
1998, pp. 254-268.

15. P. Prusinkiewicz. “Visual Models of Morphogenesis,” Arti-
ficial Life: An Overview, C.G. Langton, ed., MIT Press, Cam-
bridge, Mass., 1995, pp. 67-74.

Ilya Shlyakhter is a research assis-
tant and PhD candidate at the Mass-
achusetts Institute of Technology,
where he received BS in computer sci-
ence and mathematics in 1997 and
MEng in computer science in 1999.
As an undergraduate, he worked on

graphical models of weathering. His current work focuses
on automated detection of errors in algorithms and sys-
tem designs.

Max Rozenoer works as a program-
mer for ACUNIA (a Belgian telematics
company). His research interests
include high fidelity modeling of psy-
chedelic reality. He received a MEng
degree in 1999 from the Massachusetts
Institute of Technology.

Julie Dorsey is an associate pro-
fessor in the Departments of Electri-
cal Engineering and Computer
Science and Architecture and a mem-
ber of the Laboratory for Computer
Science at the Massachusetts Insti-
tute of Technology. Her research

interests include rendering algorithms, material and tex-
ture models, illustration techniques, and interactive visu-
alization of large databases, with an application to urban
environments. She received her BS and BArch degrees in
1987, her MS degree in 1990, and her PhD degree in 1993,

Rendering

8 May/June 2001



all from Cornell University. In 1996, she was awarded a
Faculty Early Career Development Award from the Nation-
al Science Foundation, and in 1997 she received an Alfred
P. Sloan Foundation Research Fellowship and the Harold
E. Edgerton Faculty Achievement Award from MIT. She is
a member of the ACM.

Seth Teller is a professor for the
Electrical Engineering and Comput-
er Science Department at the Massa-
chusetts Institute of Technology. His
research interests are in computer
graphics, computer vision, and com-
putational geometry, with an

emphasis on acquiring, representing, manipulating, and
interacting with complex geometric datasets. He and his
students are developing a robotic mapping system to
acquire textured, 3D CAD models of indoor and outdoor
architectural scenes. Teller received his BS degree in physics
at Wesleyan in 1985, and his MSc and PhD degrees in com-
puter science from the University of California at Berkeley
in 1990 and 1992, respectively.

Readers may contact Shlyakhter at the Laboratory for
Computer Science, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA, 02139-4307,
email ilya_shl@alum.mit.edu.

IEEE Computer Graphics and Applications 9


