Visualization of a Large Set of
High-Resolution Geo-referenced Images

Adam Kropp
Advanced Undergraduate Project
Prof. Seth Teller, Advisor
Laboratory for Computer Science, Graphics Lab
May 7, 1999

Abstract

The goal of this project 1s to develop a set of visualization tools that use existing
immage and 3D data from the City Scanning Project to display information in novel and
interesting ways. Two of the tools developed deal with viewing image information gathered
from one common optical center, allowing the user the freedom to pan, tilt, and zoom from
the optical center. These tools bring the data to life and help identify some problems with
the data collection and processing techniques. The final tool developed attempts to
reconstruct a realistic 3D view of the world from a point not represented in the captured
data by combining images taken from many locations and a rough 3D reconstruction of
structures 1n the captured region.

1. Background

The City Scanning Project has built a large suite of hardware and software tools to
acquire and process high-resolution geo-referenced digital imagery of the world with the goal
of constructing a three-dimensional model of the captured surroundings. The processing
stages are not yet mature; they currently assume the world contains only flat vertical fagades,
and they require some human intervention in the matching of certain features i the
environment. Nevertheless, the output, a texture-mapped Openlnventor model, is a fairly
convincing reconstruction of the sampled area.

Both the acquisition and processing steps produce a large amount of information
that is not limited in usefulness to geometry creation. The most basic unit of information is
the 1mage, which combines a digital image (1524x1012 pixels, 24 bit color) with the camera
parameters, location, and direction in a common coordinate system for all images. The
acquisition hardware (named Argus) captures a hemispherical tiling of images around a single
optical center (a Node). The current data set uses 47 images per node when on the ground,
and 71 image nodes when taken from a rooftop. Although each image contains its own
location information and 1s registered with its neighboring images to correct for
measurement errors, this logical grouping nto nodes allows for inter-node registration to be
accomplished by registering and adjusting an entire node rather than each individual 1mage.
It also allows for conveniently creating spherical texture maps of the world from the node’s
optical center for visualization purposes. Argus was moved around Technology Square to
acquire many nodes (81 total) with a view of each building so that the geometry
reconstruction algorithms would have enough information to proceed.

So far in the City Scanning Project, the image data has been the means to the end of
generating a three-dimensional model, but the over 16 GB of data collected 1s useful in other
applications as well. The raw data can be used in image-based rendering techniques, and can

even be combined with the generated model for some novel viewing paradigms.

2. Overview
There were two major goals driving this project: developing methods to qualitatively
assess the quality of the acquired and calculated data, and finding uses for the data other than

that which it was originally intended. The latter is more interesting than the former, so

Adam Kropp Page 1 7-May-99

although they will both be covered in some detail in the following sections, more time will
be spent discussing efforts towards that goal.

The first of these goals consists of relatively straightforward additions to the existing
tools, such as an overlay of the reconstructed data on the original images. This simple tool
allows the user to quickly verify registration between the reconstruction and features such as
buildings, giving important insight into possible causes of a bad reconstruction. Another
tool allows viewing of any single node from its center drawing from the original image data.
Super resolution nodes (nodes having large numbers of total pixels) can be viewed with this
tool with an arbitrary field of view. The user can see a large portion of a room or zoom 1n to
read a sign on the wall or examine a portion of the tiling that did not get properly aligned.

The second goal 1s less defined than the first. Two projects were completed towards
this goal: a super-resolution high-dynamic range single node viewer; and an off-node
pseudo-image-based rendering view. The former 1s an extension of the simple high-
resolution viewer that reads actual radiance data rather than simple image data to expand the
dynamic range of the images that can be viewed. This allows detail to be discerned in the
darkest shadow of a room, while the shapes of bright, sunlit clouds can still be seen through
a window (plates 5, 6). Through a dynamic mapping done in real-time, the view transfer
function (effectively the sensitivity of the camera to light) can be changed and the results
seen instantly. The off-node viewer will be described in the greatest detail because it
addresses a large number of different problems in trying to achieve its goal: building a viewer
which reconstructs the most realistic view possible from any location, not necessarily at a

node.

3. Single Node Viewing

A single node contains the information necessary to recreate a view of the world
from one point i space and time. By combining all of the images in a hemispherical tiling
around the viewpoint, it 1s possible to trace the color of any ray of light coming to the
optical center, effectively allowing one to “look around” with an appropriately made viewer.
Such an application replaces the simple photograph by something that captures a place at one
instant, rather than a view at one instant. Since information viewed from a single node need
not have any notion of the surrounding geometry, both indoor and outdoor scenes can be

captured and viewed in this manner, as is demonstrated in plates 1 through 4.

Adam Kropp Page 2 7-May-99

WIRE

The first of the tools, named wire, was developed for this project to deal with single
node viewing of a wireframe/image composite. The goal of this tool is to allow easy
visualization of mis-registrations between the original image data and the final geometry, and
between multiple nodes’ views of the same location. Such information is useful in evaluating
the registration and reconstruction algorithms, and in 1dentifying possible areas that need to
be improved.

To facilitate hardware acceleration of the view from one node, wire uses a low-
resolution cylindrical texture map, which 1s a combination of all of the original images from
a particular node. This texture 1s mapped onto the appropriate locations on a spherical mesh
located around the optical center of the node, so that a view from its center is equivalent to a
picture taken from the same location and direction. While allowing very high frame rates for
interactive use, this approach eliminates a great deal of the detail available to the original
images. Fine details tend to be blurred out due to the relatively low resolution of the texture
map (1024x512) and the hardware blending performed on textures; however this is not
important for the observation of rough details such as building edges.

Once the spherical node is drawn (with the depth buffer disabled), a wireframe
version of the reconstructed building data is drawn from the same viewpoint and
perspective. If the reconstruction is correct, the wireframe should coincide with building
edges exactly (plate 1). wire can load multiple nodes at once and quickly switch between
them so that comparisons of registration can be made between different nodes.

A practical application of this presented itself while testing out the program. Most of
the buildings in the reconstruction matched up fairly well with views from the nodes;
however one building seemed to be about ten feet taller in the reconstruction than it looked
in the images. Not only did this allow the problem to be identified, but by examining all of
the nodes that had a view of that building, a possible cause was identified. Several outlying
nodes which had views of the building and therefore contributed to its reconstruction seem
to match more closely with the reconstructed height, and are not aligned with the rest of the
nodes — a result which suggests that the geometry is based on the worst sample points. This
indicates that some sort of noise reduction technique is needed when combining the

information from many nodes while reconstructing geometry to improve the results.

Adam Kropp Page 3 7-May-99

RAYCAST
The second tool developed for this project, named raycast, is a high quality single

node viewer that samples pixels from the original images in real time using a modified form
of raycasting. Although this cannot update the view at frame rates comparable to a hardware
rendering approach without greatly sacrificing image quality, it has several advantages to that
method.

First, every sample in the view originates from one or several of the source images.
This guarantees that the node may be viewed in the same resolution as the original images
were taken, allowing much finer detail to be observed. The cylindrical texture map used in
wite contains 2048x1024 pixels, while a normal node contains 46 images, each with
1524x1012 pixels. Thus raycast is able to take advantage of 34 times the data that a
hardware approach would use for such a node, and in a super-resolution node, that amount
can be 200 times or more. This becomes apparent in (plates 3,4) where all of lobby 7 can be
viewed, and then the user can zoom in to a sign and read it. Details as small as 0.25cm at
10m can be resolved in this node.

The other main advantage is that per-pixel operations may be applied on the fly.
This allows for such effects as blending between multiple images to obtain a final value,
seamlessly mntegrating low resolution and high resolution images (or detail images) in the
node view to use extra memory only in areas that need it, and adjusting the viewer’s visual
response function for viewing high dynamic range images in near-real-time (without pre-
processing the images).

The viewer in its simplest form takes a user-controlled view direction and field of
view and rasterizes it on the screen. For each pixel on the screen, a ray is calculated from the
optical center of the node to the corresponding point on the viewport, and then is extended
out into space. The raycaster then must determine the color of that pixel based on its
direction. This mvolves determining which image or images that ray intersects, calculating
the pomnt on each image in image coordinates where the ray intersects it, and finally
performing a weighted average of the color from each image based on the distance the ray 1is
from the center of the image (only if there 1s more than one image). This entire calculation
1s enclosed in nested for loops that scan through each line and each pixel within that line.

To speed the calculation of the ray, an incremental approach is used. First, the ray to

the lower-left corner of the viewport is determined (corresponding to index (0,0) on the

Adam Kropp Page 4 7-May-99

screen). A ray (start) is constructed to the point @—tan(f%) .1, —aspect x tan(f%)@ as 1f

the viewer were looking down the y-axis; it is then rotated about the X and Z axes to align it
with the true view ditection. Next two delta vectors, dx and dz, are constructed to

increment the starting vector in the x and z directions (which correspond to x and y on the

screen). The dx vector is BZXtan(f%) / Width,0,0B and the dz vector is
a a

H),O,ZX aspect Xtan(]c%)/wi dthEl These, too, are rotated about the X and Z axes so
O O

they are aligned with the true viewport. At the start of each line, the view vector is set to
start + dz*j (where j is the vertical index). It is then incremented after each pixel calculation
by adding dx.

Next, the image or images that the ray intersects must be determined. The naive
approach to this problem is to simply project the ray on to the plane in which each image is
located, then check to see if the poimnt of intersection is within the borders of the image.
This is reasonable with a small number of images, but as the number of images in a node is
increased it becomes too time-consuming. Since this 1s an operation that must be performed
once per pixel, it must be as fast as possible to allow real-time navigation by the user. To
speed this search, a preprocessing stage is done which subdivides space in a tree structure,
and keeps pointers to the images that intersect each region. The tree begins with an

octahedron consisting of triangles with vertices of the form (i l,il,il). A ray can be placed

into one of these regions using three comparisons with zero.

During the preprocessing stage, an ImageBranch object is instantiated for each of
these triangles. The ImageBranch object will keep track of any images that fall within its
triangular region, and can optionally be subdivided into smaller regions. The preprocessor
passes all of the images to each of the eight ImageBranches. If a branch contains the image,
it 1s added to its internal list. Once the number of images reaches some internal threshold,
the ImageBranch subdivides into four smaller equally-sized triangles (see figure 1), and
passes all of its stored images to those branches. The resulting structure can be searched
with O(log n) region comparisons mstead of O(n), giving a large reduction in computation.
Many of the values needed for the ray-triangle intersections used in this search can be pre-

computed, giving an additional time savings. The structure is built such that the ray is

Adam Kropp Page 5 7-May-99

/[I\

Initial Subdivision ImageBranch Subdivision

Figurel: Subdivision of space for finding ray-image intersection
passed to the top level, which determines which of eight branches to search. The ray is
passed to that branch, which determines if it contains the ray, and if it does, either searches
its (short) list of images for intersections, or passes the ray to its four children. The children
repeat this process until image intersections are found, or none are found. A list of images
that are intersected by the ray is returned to the calling code.

Now that the images that are intersected by the ray are found, the pixels can be
sampled in each image. Fach image has a transformation matrix associated with it to specify
its projection from the origin of the node. The ray 1s projected this matrix, resulting in a
point (x, v, z) that can be used to index into the actual image data as (x/z, y/z). The colot
value from each image 1s weighted by its distance from the center of the image, and all of the

values are added and divided by the total weight, i.e.:
Srllxwil Yolilxwil Y bilxw]

= G= : , B= _
S W] S W] S W]

where w[i] is the weight associated with the pixel from image 1.

OPTIMIZATIONS

Three major additions were made to this scheme to optimize performance. First, the
pixel weights will always be fixed for a given mndex into an image, so by creating an array of

weights the same size as an image, all of the weights can be pre-calculated. The appropriate

Adam Kropp Page 6 7-May-99

weight can be accessed by the same index as is used to read the color value from the image.
This approach increases speed at the cost of additional memory usage, an acceptable tradeoff
when responsiveness is of primary concern. If all of the images are guaranteed to be of the
same size, a single set of weights can be calculated at the beginning of time for use with all
1mages.

The second improvement comes from noting that, in general, adjacent pixels will
come from the same image. Additionally, the transformation to image space is expensive, sO
an incremental method of finding the next pixel is desirable. Both of these are addressed
during the sampling stage. When the ray transformation 1s performed, and additional ray
pointing to the next pixel is also transformed. Since this is effectively a perspective
transformation, distances are not preserved, so a simple delta between pixels will not yield
proper results. However, the z value is recorded as well, and by storing the delta for x, y,
and z, the viewer can increment across the image. Using this increment value in each
image, a count 1s determined for the number of samples left before an edge of the image is
reached. The top-level loop can then simply increment each pixel location and sample each
image until the count reaches zero. At that point, it must again find the images that need to
be sampled. This reduces the number of ray-image intersection searches from once to pixel
to once per image edge intersected per scan line. Since each image typically spans between
an eighth and a fourth of the viewing area (or more if zoomed 1n), a full search will have to
be performed only a few times per scan line.

The final optimization made to maximize speed is to split the raycasting task among

Image data (x/z,y/lz) -7

Eye

\\\\\\\ Same length
Different lengths! BRREe

Figure2: Example of the use of the delta vector for sampling.

Adam Kropp Page 7 7-May-99

more than one processor on a multiprocessor machine using pthreads. Two main structures
are used to facilitate this. First, a Raycastlnfo structure is created for each scan line on the
screen. This structure encapsulates all of the information needed to calculate one line of the
image, including the ray pointing to the beginning of the line, the dx vector, a pointer to the
line of the output image, and various other useful pointers. Next, it is added to a thread-safe
queue. All of the worker threads wait on a semaphore contained in the queue until a line is
available for them to process. Once a line is available, one of the threads removes it from
the queue and processes the line. When done, it waits on the queue until another line 1is
available. This produces a nearly linear improvement in frame rate based on the number of

additional processors.

HIGH DYNAMIC RANGE

The raycaster described above 1s capable of using an arbitrary number of images of
arbitrary size, but is limited in its reproduction of a node because of a physical limitation of
the camera — digital cameras have a very limited dynamic range. The location of this range
can be adjusted by changing the exposure time on the camera, but a single image cannot
capture detail in both shadows and very bright areas. A trial node was captured at multiple
exposure settings, and the results were combined to produce a radiance map that reflects the
true brightness of every pixel. This map was then compressed using a logarithmic scale into
24 bit pixels, but retaining the full dynamic range. Along with each radiance image is an
information file that specifies the minimum and maximum radiance values, so it can be
converted back to true radiance values at a later time.

In adding radiance map support to raycast, one of the goals was to be able to adjust
the displayed range and visual response function on the fly. This precludes mapping each
image with the appropriate visual response function each time the user changes it because of
the amount of time it would take to accomplish. Also, because of the use of logarithms in
both the decoding and visual response functions, it would be prohibitively slow to convert
each pixel as it is sampled. The solution was to keep the images in their logarithmically
compressed form, and generate a 256-entry lookup table for each image which converted
each channel (r, g, b) to the appropriate value. These lookup tables must be re-generated

each time the user changes the response function or dynamic range, but they contain only

Adam Kropp Page 8 7-May-99

256 entries instead of over a million pixels. In the decode stage, a simple table lookup is
performed per channel per pixel, which has a minimal performance hit.

As can be seen in plates 5 and 6, details in the shadows of lobby 7 are visible, while
at the next moment the clouds outside the windows are visible, though it is a bright sunny
day. The image can be viewed with a compressed dynamic range so that all values are visible
at once, or the range can be expanded to bring out detail in one particular segment of the

range (at the expense of saturating regions that are brighter or darker than the target region).

4. Multiple Node Viewing

The single-node viewers described above strive to accurately display the collected
data in a useful way, enhancing what can be seen with just the raw images. With the multiple
node viewer, the goal was to use information from many nodes, as well as the reconstructed
data, to approximate what the world would look like off of a captured node. An additional
goal was to make this fast enough to be done in a real-time walk-through of the world. The
basic concept used to accomplish this is to determine which nodes should contribute to each
pixel in the viewer, and what that contribution should be. Since no actual information has
been captured between nodes, it uses information from many nodes to approximate what

would be seen from the eye point.

BASIC METHOD

In order to determine the color of a pixel from a particular ray when the eye is at the
optical center of a node, only the direction of the ray (and thus the direction of the point
being viewed) must be known. However, if the eye point is moved away from the optical
center, the actual origin of the ray must be known (figure 3). It can then be traced back to
the node to determine the proper color based on the direction from the #ode to the point.
Once this is determined, the framework for raycasting a single sample of a single node
described above can be used to determine the colot.

It 1s normally a hard problem to determine the distance an object 1s from the viewer
from a set of images; however, for this set of data, that problem has already been solved.
The reconstructed data gives a good approximation of all of the large objects in the area
being viewed. Although not all objects are covered, and the reconstruction data is not

petfect, slight deviations only cause slight distortions in the images. The largest problem

Adam Kropp Page 9 7-May-99

comes from undetected occluders close to the node (such as trees), but this is only a minor
annoyance.

In trying to achieve the goal of real-time viewing, a pure raycasting solution to this
problem would be difficult, since a large amount of time is spent calculating the color
contribution from the nodes after the point being viewed is determined. A hybrid hardware
rendering/raycasting solution was developed to speed up this portion of the calculation.
This approach uses the graphics hardware to compute visibility and ray-object intersections
quickly, then uses this information to complete the raycasting. The algorithm is basically as
follows:

1. Set up the viewing transformations in OpenGL

2. Render the reconstructed data using OpenGL

3. Read back the color and depth buffers

4. For every location where the depth 1sn’t 1 (infinity), determine the location in

wortld coordinates of that poimnt

5. Trace the point back to each node which will contribute to the final color, and

average the values together

The OpenGL depth buffer contains values between 0 and one, but these are actually
mapped from —1 to 1. During the projection transformation, every point gets translated
from its world coordinates (x, y, z) to screen coordinates (x’, y’, z’), where each coordinate 1s
in the range [-1,1]. The x” and y’ coordinates map to a location on the screen, while z” maps
to the depth buffer. This information can be used to trace back to a pixel’s origin. A ray is
constructed from the eye to the location of the pixel being traced in viewport coordinates,
with its z coordinate set to the depth component of that pixel. The ray 1s then transformed
with the inverse of the GL _PROJECTION matrix and the inverse of the
GL_MODELVIEW matrix, resulting in a point p in world coordinates.

From this stage, the color of the point p needs to be determined by using available
information. For each node that will contribute to p (the contributing nodes are pre-
determined for a frame, as will be described below), a ray 1s cast from the node’s center in
the direction of (p - node). This raycasting is accomplished exactly as in the single-node
viewer. The colors from each of these nodes are then combined in a weighted average.

These weights are determined at the same time as the contributing nodes.

Adam Kropp Page 10 7-May-99

Node View

Figure3: Example of off-node raycasting. Raysaand b are cast from the viewpoint into the scene to
color two pixels on the screen. Corresponding rays ¢ and d are cast from the node, and the
appropriate color from the node’ simages is returned to the raycaster to color the view.

Two methods are allowed for determining the contributing nodes in offnode. The
first method is to simply let the user specify which node to use. In this mode, the user can
cycle through each node to see how it projects onto the scene. This turns out to be at least
as useful as wire in checking both for registration between a node and the geometry, and
between two nodes. It is very easy to see misalignments between the image and building
edges, and by switching between nodes, the user can spot any movement between the
projections of different nodes on the buildings (such as a window moving).

The second method uses a constrained Delaunay triangulation with vertices located
at the nodes and constrained segments inserted at the edges of the buildings. The
triangulation 1s calculated at the beginning of time, and stored as a list of Triangle objects
which contain pointers to the node at each vertex as well as the position of the vertex. The
Triangle object has a method to determine whether the viewpoint falls within its interior and
a method to return a relative weighting for the three vertices based on the position of the
view. This weighting is calculated using barycentric coordinates, which give a smooth
transition between parameters at the vertices of a triangle. Given a triangle ABC and a point
p (figure 4), the weights are calculated as follows:

_ AREA(pBC) _ AREA(pCA)
AREA(ABC)’ AREA(ABC)

_ AREA(pAB)

WA AREA(ABC)’

w(B) w(C) w(A)+w(B)+w(C)=1

Adam Kropp Page 11 7-May-99

With this method, if the triangle the
eyepoint is in has a node at each of its
vertices, three nodes will contribute to every
pixel in the view that falls on a building or
ground polygon. If one of the vertices is a

PBC corner of a building, then the weight for that
) vertex will remain at zero, and only the other
two nodes will contribute to the view.

Likewise, if only one vertex corresponds

A C

- - - - with a node, than only one node will

Figure4: Areasin barycentric coordinates.
contribute to the view. This approach to

selecting the contributing nodes means that the associated calculations only need to be done

once per frame, allowing them to be fairly complex.

REFINEMENTS
The algorithm as described so far works well as long as the buildings being viewed

are completely visible to all three contributing nodes. However, when a surface is i view
which is occluded in some node’s field-of-view, the surface will be colored with the
occluder’s color value, resulting in strange results. To counter this, the raycaster must
determine whether the color from a node 1s describing the same polygon that the viewer is
looking at. This 1s accomplished by encoding a unique ID for each polygon in its color
when it is rendered. After the nodes are loaded but before the user can view the scene, a
visibility mask 1s generated for each node consisting of six square images forming the sides
of a unit cube. This mask 1s generated by rendering the scene from the node’s center in each
of six directions. During rendering, the color buffer is read to determine the polygon ID of
the pixel being rendered. It is then compared with the surface visible in that direction by
each node. If a node sees a different polygon in that direction, its weight is reduced to zero
so that the other nodes fill in the correct values. This method again takes advantage of the
graphics hardware for speed improvement, and pre-computes all of the expensive visibility
tests. Although discontinuities in color may be seen on the occlusion boundaries the general

coloration will not be disturbed by bad data like it otherwise would (plates 7,8).

Adam Kropp Page 12 7-May-99

=0

Node .
View

Figure5: Example of off-node occlusion problem. When the node tries to give a color for a point on
building B, it actually is showing a color from building A unless visibility detection is used.

With visibility accounted for, there are situations where none of the contributing
nodes has a view of some portion of a surface, in which case the raycaster cannot color that
pixel. To remedy this, another pre-calculation is performed which computes the node which
has the “best” view of each surface, where best 1s defined as covering the greatest portion of
the surface of all of the nodes, and in the case of a tie, being closest to the surface. The
surface coverage calculation is performed again by using the graphics hardware. A view is
constructed which originates at the node and makes the polygon being checked as large as
possible in the viewport without going beyond the edges. Then the entire scene 1s rendered
mn a very small viewport (3x3), and the number of pixels belonging to the polygon and the
average depth of those pixels 1s determined. If the number of pixels is greater than the
current candidate node, or it the number of pixels is the same but the depth i1s less, then the
new node is made the candidate node for the surface. Once all nodes have done this
process for a polygon, the winner will be determined, and will be stored in an array indexed
by the polygon’s ID.

If a pixel is being sampled where the total weighting is found to be zero, the
raycaster has no information from the designated nodes to color the point with. At this
point, it uses the node determined to have the best view of the polygon to fill in the pixel

value. Depending on the total number of nodes being used and the layout of the geometry,

Adam Kropp Page 13 7-May-99

this may still yield no sample for the pixel; however, it greatly reduces the chance of leaving a

gap in the coloring of a polygon due to occlusion.

OPTIMIZATION

Three optimizations are made to the algorithm above to mmprove the speed of
rendering a frame. The first is to split the screen in to scan lines and dispatch one line at a
time to an available thread, just as in the single node viewer. This allows for a 2X or 4X
speedup depending on the number of processors available. The second optimization is to
perform pixel doubling along a scan line. Every line 1s still rendered; however within a line
only every other pixel is rendered. Each skipped pixel is filled in with the average of the two
rendered pixels surrounding it. This causes some image degradation, but if only performed
when the user is changing the view, it 1s barely noticeable; it results in another 2X speedup.

The final optimization reduces the work needed to be done to determine which
1mages a ray intersects from a node. Since this viewer is not scanning linearly across a node
like the single node version, it cannot take advantage of any incremental update schemes, so
it must determine the source images for each pixel. However, since it is likely that several
pixels will still be taken from near each other, and since the same pixels will be used from
many different views, it would be advantageous to somehow cache the results of a ray
direction search in a node. The caching is performed by a hashtable that hashes on the ray
direction, combining the most significant 6 bits from each component of the direction
vector into an 18-bit hashcode. This scheme effectively splits the unit sphere into 2'* =
262144 contiguous regions (not necessarily all the same size or shape, but similar in size).
The hashtable is then filled in lazily in the following manner:

When tracing a ray from a node:
* Check if the ray maps to a valid hash entry
* If so, return the images pointed to by the hash entry
* Ifnot, determine the source images using the search tree
* Create a new hash entry with the source images
* Return the images
This method uses a large amount of memory per node; however after some initial
settling time when the hashtables are being filled 1, it produces results in O(1) time,

resulting in a 2X to 3X speedup.

Adam Kropp Page 14 7-May-99

5. Conclusions

Although no specific ends were determined at the beginning of this project, three
interesting and very different visualization tools emerged from it. Wire took existing
rendering techniques for displaying the reconstructed data and node images and combined
them in a new and useful way, while serving as a warm-up project for the more complex
tools that followed. Raycast is probably the most technically challenging of the three as far
as designing an efficient algorithm and data structure for the ray-image intersection test.
Finally, offnode built on the foundation work in raycast to provide a truly novel approach
to viewing the City Scanning Project data.

Wire and raycast are essentially complete as they stand, although raycast could have
some additional work done on the visual response function code to make the interface more
mntuitive. Offnode, however, has not reached the goal of providing a truly realistic view of
the world from any point. The two major problems which need to be solved to reach this
goal are dealing with small occluders (such as trees, cars) and dealing with the sky. Some
effort was put into projecting the sky from the nodes being used to color the buildings, but
the disparity between sky color and cloud cover even among adjacent nodes makes this
solution less than ideal, and buildings “punch out” holes in the sky which are very
noticeable. A median algorithm was tested to remove small occluders which appeared on a
building from one node but not the others, but results were poor due to the small number of
samples used (three). For such a “tree removal” algorithm to work, many more nodes will

need to participate in the calculation.

Adam Kropp Page 15 7-May-99

6. Appendix A — Color Plates

Platel: wire showing the wireframe aligned with buildings

Plate2: wire showing a mis-aligned node

Adam Kropp Page 16 7-May-99

Plate3: Wideangle Plate4: Closeup

Plate5: Long exposure -- inside Plate 6: Short exposure -- outside

Adam Kropp Page 17 7-May-99

Plate7: View generated from asinglenodewith Plate8: View generated from multiple nodes
fill-in provided by a second node

Plate9: View from anode

Plate 10: View from between nodes

Adam Kropp Page 18 7-May-99

Plate 11: Another off-node view

Plate 12: Visualization of projection from above view

Adam Kropp Page 19 7-May-99

