
Distributed Development and Teaching of
Algorithmic Concepts

 

Seth Teller, Nathan Boyd, Brandon Porter, Nick Tornow

MIT Computer Graphics Group

http://graphics.lcs.mit.edu

 

Abstract

We describe Fuse-N, a system for distributed, Web-based teaching of algorithmic concepts
through experimentation, implementation, and automated test and verification. Fuse-N is
accessible to, and usable by, anyone with a Java-enabled Web browser. The system was designed
to 1) minimize the overhead required for students to engage in the essence of the learning
experience; 2) allow students to experiment with, generate, and evaluate algorithms and their
implementations; and 3) facilitate greater, more effective interaction among students and
between students and teaching staff.

The system represents algorithmic concepts as dynamic modules in Java. Students map inputs to
outputs either via system-supplied "reference" implementations; manually, with corrective
feedback; or (most commonly) by writing one or more alternative implementations for the
concept. The output of the student’s implementation is programmatically and visually compared
to that of the reference implementation. Modules can be interconnected in a dynamic dataflow
architecture of arbitrary complexity. Teaching staff within the system can monitor student
progress on-line, answer questions, run student implementations, and perform a variety of other
tasks.

A prototype system, first deployed in Fall 1997 to an introductory college computer graphics
course, supported two modules. We have since extended Fuse-N to include a classical polygon
rasterization pipeline, a module authoring "wizard," an editor, and several other components. We
describe Fuse-N from student, staff, and developer perspectives. Next we describe its
architecture and the technical issues inherent in its construction and extension. Finally, we report
on some early experiences with the system.

1. Motivation

Computer science courses with large enrollments and significant programming components
stretch the abilities of teaching staff to provide effective infrastructure, and individualized
attention, to their students. For example, students need development tools and standardized (or at
least consistent) environments in which to generate and test their implementations. Providing and
maintaining these can be a formidable engineering task for the staff. Students submit complex
programs for evaluation by the staff, often reducing the time available for individual attention to



students. Also, despite nearly ubiquitous networks, email, etc., it is difficult with standard
mechanisms to ensure effective, timely communication and collaboration among students and
between students and staff.

The Fuse-N system addresses each of these considerations. First, it provides an intuitive,
consistent visual interface through which students can experiment with, generate, and test
algorithm implementations, ultimately submitting them for grading. This interface is backed by a
robust client-server architecture for maintaining persistent versions of assignments and student
implementations. Second, Fuse-N provides to the teaching staff an interface through which they
can assess student work in progress, and submitted work, using a location-independent
mechanism for executing others’ implementations. A development kit for the generation of new
modules is also provided. Third, the system provides mechanisms for synchronous and
asynchronous communication among students and between students and staff, including
annotations of course material, chat boards, shared whiteboards, and staff grading and feedback
for specific student work.

2. Previous Work

The Web-based educational tool WebCT [Gol+96] provides sophisticated authoring tools to
embed general course content, but no specific support for teaching algorithmic concepts is
included. Instructional software development environments are less common, though the
Jscheme environment [Hic97] allows students to implement assignments in a subset of the
Scheme language from any Java-enabled Web browser. Algorithm visualization environments
and toolkits, such as the Zeus system [Bro91] and Brown University’s Interactive Illustrations
[Dol97,Try97] provide sophisticated frameworks for examination of running algorithms. Finally,
dataflow systems such as SGI’s ConMan [Hae88] and IBM’s Data Explorer [IBM98] allow direct
manipulation and aggregation of software modules. (An in-depth discussion of these and other
related systems can be found in [Por98].) To our knowledge, however, Fuse-N is unique in its
combination and synthesis of many such elements into a distributed system for collaborative
pedagogy.

3. System Users’ Perspective

One effective way to view the Fuse-N system is from a series of user perspectives. The system is
first described from the point of view of a student. The teaching staff’s point of view is described
next, including mechanisms for disseminating course material, and collecting and evaluating
student work. The developer’s perspective details the steps required to author a new module for
the system. Our discussion largely avoids implementation details; these are deferred to Section 4
(System Designer’s Perspective).

3.1. Student Perspective

Unorganized, the sheer volume of available course material can overwhelm the student. Thus
two principal tasks of the educator are first to select a collection of material to be taught, and
second to organize this material into a coherent progression of concepts. Fuse-N facilitates
exactly this sort of progression in its exposure of concepts at several levels of abstraction (or,
equivalently, at several levels of detail). For example, computer science and engineering courses
typically emphasize the functional composition or interrelation of a collection of smaller pieces.



Fuse-N represents such building blocks as algorithmic components to be manipulated by the
student.

Figure 1: The Fuse-N work area.

 

These components are visible as modules within the Concept Graph, a free-form grid containing
a persistent collection of interconnectable modules selected by the course staff (Figure 1). Each
module represents an algorithmic concept, i.e., a well-defined algorithmic mapping of input
instances to outputs. Each module has a visual representation, consisting of an icon, a text label,
multiple selectable input and output ports, and an interface with which the user can select among
the module’s interaction modes. In line with the usual notion of abstraction, students can think of



modules and their connections either as closed functional units, or as open, modifiable
components. For example, the student can connect one module’s output port to another module’s
input port (provided their types match), thereby assembling a larger functional unit. The student
can open a module for editing, supplying his or her own code to implement the module’s
function. Successive student implementations can be compiled and reintegrated into the running
system on-the-fly (Section 4.1).

Students who actively engage in implementing an algorithm understand and retain concepts
better than those who simply, and passively, view visualizations [Law+94]. Students can assess
their understanding with the help of four interaction modes: Reference, Manual, Implement, and
Difference. In all cases, algorithm inputs are either provided by the system, or can be specified
interactively by the student or staff. A diagnostic window reports a textual description of each
input instance, and of each output action effected by the student or reference implementation.
Reference Mode allows the student to view the operation of a correct "reference" implementation
(cf. Figure 1) provided by the module developer (Section 3.3). The source code for the reference
implementation is generally hidden from the student, though in some cases it may be exposed
(for example when the student is challenged to implement some alternative, or asymptotically
superior, strategy). Reference mode is similar to that provided by traditional algorithm animation
and visualization systems [Bro+84]; it helps a student understand algorithm behavior for a
variety of input instances, including boundary cases in which the correct behavior might not be
evident from Manual mode.



Figure 2: Manual mode

 

Manual mode challenges the student to effect the algorithm’s operation solely through user-
interface actions (Figure 2). The student need not necessarily do so by simulating an algorithm;
their task is only to produce the correct output for the currently specified input. The system
provides an immediate visual response to each student action. For instance, Manual mode for
Bresenham’s algorithm challenges the student to select, for a given line segment specified by its
endpoints, those pixels which would be drawn by Bresenham’s segment rasterization algorithm
[Fol+82]. Correctly placed pixels are drawn normally, whereas incorrect pixels show red.
Manual mode inputs are typically crafted to allow the student to complete the needed operations
by hand in a few minutes.



Figure 3: Implement mode

Implement mode challenges the student to supply Java code that implements the algorithm for
the current module (Figure 3). In this mode, the student is effectively presented with the interface
to a Java class, whose methods are invoked by the system as appropriate. Continuing with our
example, Implement mode provides a stubbed method Bresenham(x1,y1,x2,y2), which is
invoked whenever the student (or staff, Section 3.2) selects or specifies a point pair, or a suitable
input event arrives from an upstream module. The interface also provides one or more
functioning "base calls" which map to the module’s abstract output ports. Thus the base call
SetPixel(x,y) may effect the illumination of the pixel at framebuffer position (x,y), cause the
printing of a diagnostic message, generate a typed event for forwarding to downstream modules,
or any combination of these, according to the current interaction context.



 

Figure 4: Difference mode.

Difference mode displays a visual representation of the difference between the output of
student’s implementation, and that of the reference implementation (Figure 4). For example,
difference mode for the Bresenham module colors pixels in one of four ways. Pixels drawn by
both the reference and student implementation are shown in white; those omitted by the student
algorithm are shown in blue; those drawn in the wrong position are shown in red; and those
output more than once are shown in green. Difference mode is a particularly useful and unique
feature of Fuse-N; it allows the student (and staff) to determine quickly the algorithm’s
correctness for a variety of stored or interactively specified input instances. (Crafting efficient
and pedagogically useful difference engines is a challenging part of developing a new module;



we address this issue in Section 3.3.)

The student can invoke the Fuse-N editor for any module. This is rudimentary editor which
displays the class interface, staff comments and hints, and the student’s code, and allows the
student to load, save, and compile implementations, and view compiler diagnostics. The editor is
being extended to incorporate debugging operations, student and staff annotations, and many
other system aspects (Section 5.3).

A suite of communication tools round out the student’s system view. Students can read the
message of the day, chat with other students or teaching staff who happen to be online, browse
the chat history to look for questions that may have already been asked, or share a graphical
whiteboard. We are extending these features to allow the "sharing" of a client’s workspace. Thus,
students and staff will be able to interact with a Concept Graph and modules as if they were at
the same physical location; for example, a TA could demonstrate a certain input case to the
student by direct manipulation of the student’s desktop. This and many other collaboration
aspects of Fuse-N are discussed in [Boy97].

3.2. Teaching Staff’s Perspective

Fuse-N is designed to maximize the teaching staff’s availability and effectiveness. Fuse-N
provides infrastructure for the creation, selection, and distribution of course material, the
tracking and evaluation of student work, and general course administration such as maintenance
of course lists, lecture notes, grades, messages of the day, and other materials.

Generating, testing, organizing and distributing course software infrastructure to students can be
a significant burden for teaching staff. Fuse-N provides a simple mechanism and dataflow
architecture for authoring modules representing algorithmic concepts, and functionally
interconnecting these modules into aggregations with visible structure. Related materials are
associated through standard Web mechanisms (e.g., linking).

One traditional coursework model involves the staff’s generation and assignment of work; a
period during which students complete the assignment; a deadline at which time students turn in
completed work; an evaluation period for staff to process this work; and a feedback period in
which a grade and other information is returned to the student. These phases routinely span
several weeks of activity.

Fuse-N provides several mechanisms that extend this batch model to an interactive setting. For
example, the system provides visual avatars for each student, situating these avatars near the
visual icon representing the module on which the student is working. The teaching staff can
broadcast timely messages to selected groups. The staff can also monitor an individual student’s
progress by locally executing the student’s current implementation, subjecting it to Implement or
Difference mode as described in Section 3.1. An assistance queue, interactive chat sessions and
whiteboards, and this "over the shoulder" execution mode all increase the staff’s ability to
identify struggling students, and help them in a timely fashion.

Several mechanisms are provided to ease the process of evaluating large amounts of student
code. Designed test cases can be automatically applied to student implementations, and common



errors detected by interposing the student module between a generate/test module pair. A Web-
based grading form (Figure 5) prompts the staff member for specific feedback about the student
work, and can incorporate input instances that cause the student implementation to exhibit
specific behavior. These mechanisms write grading information and associated material to the
server for persistent storage.

 

Figure 5: Grading a student from within a browser.

Finally, the system provides a uniform, location-independent interface to all of these
mechanisms. Thus, just as the students may complete coursework from any browser, so can the
staff grade or otherwise provide feedback to any student from any browser (Figure 5). We have
found this capability to be of significant value in actual course administration (Section 5.1).

3.3. Module Developer’s Perspective

This section describes the system from the point of view of the module developer, who maps
abstract algorithmic concepts to actual modules in Fuse-N. Module developers may be teaching
staff, students, or more broadly any third party who wishes to generate course content.

Creating a new module is a relatively simple process. Using common design patterns, the basic
functionality of every module can be coded automatically. The developer specifies through a



dialog box the module name, the input type(s) that the module can receive, and the output type(s)
that the module generates. A Java servlet, analogous to a development kit "wizard," generates a
Java source file representing the module and compiles it into a class file. The Fuse-N client then
requests that the class be loaded into the current application, creating an editable instance of the
new module.

In order to implement a specific module, the module developer codes the action to be taken when
new data arrives on any input port. The developer issues data on an output port simply by
invoking a provided method call. The developer also must design, specify, and provide the base
call(s) with which the student is to generate output, as well as a mapping from base call(s) to
output ports. Next, the developer provides code which maps both input and output data to visual
representations on a graphics canvas associated with the module. Finally, the developer must
specify and implement the module’s Manual, Reference, and Difference modes. Once a module
has been created, it is easily added to the Fuse-N server, becoming available to all clients of that
server.

4. System Designer’s Perspective

This section describes Fuse-N from the point of view of its designers. Here we discuss the
technical underpinnings of the system and some of the issues inherent in its construction and
extension.

4.1: System Architecture

This section gives a brief outline of the technologies used in the system architecture. Specifically
we discuss our choice of a client- server model, the advantages of location- and platform-
independence, and our dataflow architecture.

Fuse-N is implemented as a client-server architecture. The Fuse-N server is comprised of a
traditional Web server and a group of Java servers and servlets. A Java registry server tracks
users in the system; a Java messaging server handles text-based message delivery; and a servlet
performs essential system functions such as generating HTML code for display to the client, and
compilation of user modules. All user, course, and system information is stored persistently on
the server. The server supports location-independent access to user data, restricting access as
appropriate.

The client application is comprised of an HTML environment and a set of Java applets, both of
which are served to the user’s browser. Users receive the most recent version of the Fuse-N client
at the start of each session. Because Fuse-N is coded entirely in Java, Fuse-N clients and servers
can run on any platform equipped with a suitable Java Runtime Environment [Gos95].

Fuse-N uses a stateful dataflow model of sequential execution, enabling arbitrary aggregation of
components. Software applications can be created by linking the output(s) of stateful
components to the input(s) of other components. Thus an application can be modeled as a
directed acyclic graph of components. Because the input(s) and output(s) of the components in a
dataflow system are defined explicitly, each component can be treated as a black box abstraction
of the operation it performs. The resulting dataflow systems are modular, and can be rapidly
assembled, modified, and extended. Dataflow systems naturally extend to parallel operation, as



each component processes data independently of all other components.

This dataflow architecture also supports the dynamic creation of applications. Fuse-N’s
underlying architecture supports the ability to load modules, manage interconnections, and route
information from any output to any input. Thus, users create applications by linking modules in a
run-time dataflow system, as in ConMan [Hae88]. Individual components have graphical
representations that can be arranged and linked by the students. Links are typed and can be
created, modified, or destroyed as data flows through the system. Modules run in separate
threads. Each modules queues incoming data for processing, and outgoing data for delivery to
other modules. Modules can be re-compiled dynamically; successfully compiled modules are
inserted into the running application. Newly created modules inherit all of these capabilities
automatically through a subclassing mechanism. The user is left to focus entirely on the module
algorithm, interconnections, and graphical display. (A comprehensive overview of Fuse-N’s
dataflow architecture can be found in [Bwp98].)

5. Early Experiences

Two specific experiences with Fuse-N illustrate its potential. First, we set out to assess the
system’s effectiveness by deploying two simple modules as assignments for the undergraduate
computer graphics class. Second, we implemented a "classical" polygon rasterization pipeline as
a series of dataflow components developed within Fuse-N. After describing these experiences,
we describe several current and future directions for Fuse-N.

5.1. A Trial Run

Fuse-N’s early prototypes were designed primarily as proofs of concept. Fuse-N was first
deployed to students in the Fall of 1997, in the form of an introductory Computer Graphics
course with 104 students. Each student was asked to implement two modules inside Fuse-N:
Bresenham’s segment drawing algorithm, and Cohen-Sutherland’s segment clipping algorithm
[Fol+82]. Upon submission of the assignment, each student was asked to fill out an anonymous
survey. The results were positive; students felt the assignments were well organized, and helped
them learn the material.

As expected, human interaction was a crucial element of the process. The collaboration tools of
Fuse-N were heavily used, allowing TAs to pinpoint many of the errors students were making
only minutes after students began coding. With the students’ permission, TAs effectively
provided preemptive assistance. They did not have to wait for students to start asking questions,
but could load students’ code and examine its behavior. The staff could then clarify points and
make suggestions to the entire class, or to those students working on the current module. This
immediate problem detection and correction ability allowed students and teachers to interact
more effectively outside of the classroom.

Another interesting aspect of the system was the staff’s ability, given access to the development
process as well as the final results, to distinguish among the learning and implementation styles
of various students. Some students wrote careful pseudocode, then a small number of
implementations. Others seemed to be coding by successive approximation, submitting many
scores of slightly varying code revisions until they finally achieved a correct implementation.
This rather unexpected result -- that in removing essentially every barrier to recompilation, we



may have actually encouraged an inferior programming practice -- has led us to reexamine the
way in which students are asked to use the system. In particular, we are now investigating
mechanisms by which students can be urged to achieve greater mastery of the material before
attempting implementation. For example, students could be prompted to demonstrate
understanding of the input/output mapping in Manual mode, and to submit coherent pseudocode
to a staff member, before commencing implementation.

5.2 Implementing a Polygon Rasterization Pipeline

We extended, and stressed, the system by implementing a classical polygon rasterization pipeline
from a core set of modules (Figure 6), including TraverseScene, CameraModel, BackFaceWorld,
WorldToEyeSpace, EyeSpaceToNDC, ClipNDC, NDCToScreenSpace, RasterizeTriangle,
DepthBuffer, and FrameBuffer. Each member of the development team implemented several
modules. Instantiating each module required clicking the New Module button, entering the
module’s name, and specifying the module’s typed inputs and outputs. A stub for the module was
then automatically generated and compiled by the system. Finally, we filled in the stubs by
writing Java code to effect the functional mapping required of each module, and wired together
the appropriate module inputs and outputs through the Concept
Graph interface.

 



Figure 6: A Dataflow Polygon Rasterization Pipeline

Implementing this system took three students about one week. This was less than we had
anticipated. (However, the students implemented only the Reference algorithm for each module,
arguably the easiest portion; the Manual and Difference mode implementations are underway.)
The system proved robust, supporting multiple simultaneous execution pipelines through the
system while maintaining responsiveness. The dataflow model was a natural fit to the graphics
pipeline. Students who implemented parts of the pipeline have expressed that even though they
previously understood the pipeline, they had a much better sense for it after implementing it in
Fuse-N. The students also learned that adding internal, "self-checking" routines to modules was a
particularly helpful technique. Overall, the Fuse-N environment made the process of building
and exercising this system efficient and instructional.

5.3 Current Efforts and Future Directions

We continue to add capabilities to the system. Our active research and development areas can be
categorized as: improving the integrated environment for students and developers; developing
new capabilities for the teaching staff; and extending the dataflow model.

The current editing and debugging systems are adequate for simple modules, but become
cumbersome when the task becomes more difficult. We are actively working on incorporating a
better code editor and debugger into the system, and achieving closer coupling between applets,
dynamic module state, and compiler and run-time diagnostics.

We are also expanding the capabilities of teaching staff. For example, the staff expressed the
desire to revise grading criteria, generate Web-based grading forms, and analyze and distribute
grades from within the system. We are improving the staff’s ability to track student progress, and
improve the system’s general administrative features. Finally, we have designed for the
transparent sharing of events across the network [Boy97]. This will allow the TA effectively to
reach over a student’s shoulder and assume control of the mouse or keyboard, providing a kind of
remote tutoring.

A related thrust of our work is extending modules to connect to other modules on remote
machines, using the transparent network event layer of [Boy97]. Providing basic dataflow
constructs will help students and teaching staff assemble complex systems easily. Abstracting
these connective elements as components in their own right is a notable innovation of our
system. Finally, determining how best to integrate manual interaction with the dataflow system
and accompanying visualizations, and how to simplify the generation of difference engines for
complex algorithms, are both hard open questions.

We foresee developing a number of modules as part of the Fuse-N project, in addition to the full
undergraduate Computer Graphics curriculum currently under way. We are exploring
collaborations with other algorithmic learning domains, such as those of MIT’s class 6.001, The
Structure and Interpretation of Computer Programs [Abe+85]. There we plan to support a
Scheme interpreter within a Fuse-N module, allowing dataflow interconnection of "Schemelets."
We hope that as Fuse-N becomes more widely used, students, educators and researchers will
contribute modules to the system, creating a distributed library of instructional algorithmic



modules in the public domain.

6 Conclusion

Fuse-N improves upon traditional software development environments, while extending Web-
based educational systems to support experimental problem solving. We designed it explicitly to
support interactive pedagogy in a limited domain, that of algorithmic concepts. The system
supports the rapid engagement of students with the essence of the material. Fuse-N supports
algorithmic instruction through Reference, Manual, Implement, and Difference for each module.
At a higher level of abstraction, students can link many such modules in a dataflow system.
Preliminary results are encouraging, as gauged both by classroom experiences with an early
prototype, and by our successful realization of a classical polygon rasterization pipeline within
Fuse-N.
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