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Image pyramids

» Gaussian
* Laplacian

Wavelet/QMF
Steerable pyramid
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Fig. 4. First six levels of the Gaussian pyramid for the "Lady™ image The original image. level 0. meusures 257 by 257 pinels and cach
hagher level array is roughly half the dimensdons of ies predecessor. Thus, kevel § meassares just 9 by @ piveks.
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

The computational advantage of pyramids

GAUSSIAN PYRAMID
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Fig 1. A one-di | graphic repr ion of the process which

generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.
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Convolution and subsampling as a matrix multiply (1-d
case)
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b * a, the combined effect of the two
pyramid levels
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Image pyramids

e Gaussian
 Laplacian
Wavelet/QMF
Steerable pyramid

Image pyramids

 Laplacian

The Laplacian Pyramid

* Synthesis
— preserve difference between upsampled
Gaussian pyramid level and Gaussian
pyramid level
—band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels
¢ Analysis
— reconstruct Gaussian pyramid, take top layer
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Laplacian pyramid algorithm
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Image pyramids

* Gaussian

» Laplacian

* Wavelet/QMF

» Steerable pyramid

What is a good representation for
image analysis?
(Goldilocks and the three representations)

 Fourier transform domain tells you “what”
(textural properties), but not “where”. In
space, this representation is too spread out.

» Pixel domain representation tells you “where
(pixel location), but not “what”. In space, this
representation is too localized

« Want an image representation that gives you
a local description of image events—what is
happening where. That representation might
be “just right”.




Wavelets/QMF’s

transformed image
F = Uf —— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

The simplest wavelet transform:
the Haar transform

The inverse transform for the Haar wavelet

>> inv(U)

ans =

0.5000 0.5000
0.5000 -0.5000

Apply this over multiple spatial positions

U=
110 0 0 0 0O
1 -1 00 00 0O
00 110 00O
00 1-1 0000
00 0 0 1 1 0 O
00 0O01-1 00
00 0 O0O0O0T11
00 0 00 O0 1 -1

The high frequencies

U=
110 0 0 0 0O
1 -1 00 0 0 0O
00 1 10 00O
00 1-1 00 00
00 0 0 1 1 0 O
00 00 1-1 00
00 0 O0O0O0T11
00 0 00 0 1 -1
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The inverse transform
>> inv(U)
ans =

0.5000 0.5000 0 0
0.5000 -0.5000 0 0
0 0 0.5000 0.5000
0 0.5000 -0.5000
0 0 0 0.5000 0.5000
0 0.5000 -0.5000
0 0 0 0.5000 0.5000
0 0 0 0.5000 -0.5000
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Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Analysis section Synthesis section

Figure 4.2; An analy syntlesis Aller bank.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Figure 4.4: Octave band splitting produced by a four-level pyramid cas-
cade of a two-band AfS gyt The top picture represents the splitting
of the two-band AfS system. Each sucossive piclune shows Une effeet of
reapplying the system to the low pass subband (indicated in grey ) of Che
previous p re. The bottom picture gives the linal four-level partition of
the frequency demain. All frequency axes cover the range rom 0 to 7.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.
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Table 4.1: Odd-length QMF kernels, Hall of the impul
valaes are shown for each of the normalized lowpass QMF filters (All filters
are symmetric about n = 0). The appropriate highpass fil are obtained
by delaying by one sample and mualtiplying with the sequence (-1)".

= response sample

Now, in 2 dimensions...
A

Horizontal high pass

Frequency domain

Horizontal low pass



Apply the wavelet transform separable in both dimensions

Horizontzil high pass,
vertical low-pass

Horizontal high pass,
vertical high pass

Horizontlal low pass,

Horizontal'low pass, N
P Vertical low-pass

vertical high-pass

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

o To create 2-d filters, apply
the 1-d filters separably in
the two spatial dimensions

Wavelet/QMF representation

Good and bad features of wavelet/QMF
filters

* Bad:

— Aliased subbands

— Non-oriented diagonal subband
» Good:

— Not overcomplete (so same number of
coefficients as image pixels).

— Good for image compression (JPEG 2000)

Image pyramids

Gaussian
Laplacian
Wavelet/QMF
Steerable pyramid

Steerable filters

Steerable Filter Architecture

AN e
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Figure 2-3: Steerable filter system block diagram. A bank of dedicated filters
Pheir outputs are multiplied by a set of gain maps which

adaptively control the orientation of the synthesized filter,

http://people.csail.mit.edu/billf/freemanThesis.pdf
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http://www.merl.com/reports/docs/TR95-15.pdf

Filter Kernels

Coarsest -ec:lku

Image

Finest scale

Reprinted from “Shiftable Multi T " by Si i etal., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Non-oriented steerable pyramid

Figure 4: A 3-level k = 1 (non-oriented) steer.
able pyramicl. Shown are the bandpass images
and the final lowpass image.

http://www.merl.com/reports/docs/TR95-15.pdf

3-orientation steerable pyramid

Figure 5 A 3-level k = 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at each scale and the final lowpass
image.

http://www.merl.com/reports/docs/TR95-15.pdf

Steerable pyramids

« Good:
— Oriented subbands
— Non-aliased subbands
— Steerable filters
« Bad:
— Overcomplete

— Have one high frequency residual subband, required
in order to form a circular region of analysis in
frequency from a square region of support in
frequency.

Oriented pyramids

« Laplacian pyramid is orientation
independent

» Apply an oriented filter to determine
orientations at each layer

— by clever filter design, we can simplify
synthesis

— this represents image information at a
particular scale and orientation
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aplacian Pyramid Ciriented Pyramid

Laplacian Pyramid | Dyadic QMF/Wavelet | Steerable Pyramid
sell-inverting (tight frame) [[ no yes yes
overcompleteness /3 1 1k /3
aliasing in subbands perhaps ves no
rotated orientation bands || no only on hex lattice [9] | yes

two other well-} I b rep

Table 1: Properties of the Steerable Pyramid rel

Simoncelli and Freeman, ICIP 1995

http:/A cns.nyu.edu 11i95h. pdf

But we need to get rid
of the corner regions

before starting the
recursive circular
filtering

http://www.cns.nyu.edu

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
—a o @, The basis functions are related by
translations, dilations and rofalions (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

1li9sh.pdf  Simoncelli and Freeman, ICIP 1995

* Summary of pyramid representations

e Gaussian

» Laplacian

Steerable

* Wavelet/QM

yramids

Progressively blurred and
subsampled versions of the
image. Adds scale invariance
to fixed-size algorithms.

Image p

Shows the information added in
Gaussian pyramid at each
'spatial scale. Useful for noise
reduction & coding.

aliasing and some non-oriented subbands.

Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis.

pyral

Bandpassed representation, complete, but with

Schematic pictures of each matrix
transform

Shown for 1-d images

The matrices for 2-d images are the same idea, but more
complicated, to account for vertical, as well as horizontal,
neighbor relationships.

transformed image
F =Uf — Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform




Fourier transform

Fourier
transform

Fourier bases
are global:
each transform
coefficient
depends on all
pixel locations.

pixel domain
image

Gaussian
pyramid

Gaussian pyramid

pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.

Laplacian
pyramid

Laplacian pyramid

pixel image

Overcomplete representation.
Transformed pixels represent
bandpassed image information.

Wavelet
pyramid

Ortho-normal

transform (like
Fourier transform),
but with localized
basis functions.

Wavelet (QMF) transform

pixel image

Steerable
pyramid

Multiple
orientations at.
— onescale

Multiple
orientations at
the next scale

the next scale...

pixel image

— | Over-complete

representation,
but non-aliased

—— — subbands.

Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

Associate Investigator,
Howard Hughes Medical Institute

Associate Professor,
Meural Science and Mathematics,

Mew Yaork University




Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

lev
‘ @\ Laboratory for Computational Vision
| tome | Pospie [Resnwen [Pubscations] 8ot |

Publicly Available Software Packages

+ Tasturm. Mat
‘Syethesizing visual textures, memw;:qwlmamn
ance (UNIUPC, gaip'ed tar file)
« EPVAC g 5 .C
Eesiabie
labPyr for muti-ucale image procetsing

aster and has.
optiom. README. Contents, Modfication st

Why use these representations?

Handle real-world size variations with a
constant-size vision algorithm.

* Remove noise
» Analyze texture
» Recognize objects

many boundary-handing 1
e  Label image features
————> - The Stnarabie Py e s
e, ww bl
« Computatonal Models of cortical newons. Macintosh program available.
« EFIC - EMciant Pyemvid (Wireslat) Image Coder. C soues code svalabie.
. Bavad Vinn & image Sntem]
README | Chagels / Doc (225K) 1 Souss Code (22501
+ CL-SHELL [Gru Emnacs <> Comman Lisp Interface)
README / Change Log / Source Code (1184
E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burt | J. M. Ogden
. . . . I 1 1 " |
Pyramid methods in image processing s @ i
Lo =R [ 77
5 | T laral
The image pyramid offers a flexible, convenient multiresolution i ! TaARgET 1 i
format that mirrors the mulliple scales of processing in the —® frnd nesty - !
human visual system. L R ——t —® 5
.o
Y ' osmr "
Fig. 1. Two memoos of searching 10r 3 GIget patiern over copees. of the FMage reduced N scale. The trget shoud be

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

iy seakes. I D Arsl ipprodch, (). copkes of W Lrgel  [usl ke encegh 1o reschve criical detalls The two ag-
paliom arw constructed af several expanded scakes, and  proaches shoukd give equivalkent resulls, buf the second Is
et 8 comvohed W e orgRal Wage. I T cond Mo fciant by T TOuth powsr of I Scale Cior (Fge
approach, {bl, & snghs copy of Pe Largel o).

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Fig. 10, image mosaics. The ket bl of image (af is cosnated with the nght hul of
imige (b} 1o g Mhe mosaic i (o). Mot thal the boundary between mgions i
clearly visi. Tho mosaic in (o) was obtaned by combining images soparately in
wach spatial frequency band of ther pyramid mpresentations then expanding and
ST Hodc # BRSSO

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Very early computational approach to
creating large depth-of-field

sng-mmanmm g, Thod o imiges o e Jophs oF Sok] v
are shown I () and (B). These are combined digftady Io ghe fhe image ull an Mot th
e il of ek i i, values

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
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An application of image pyramids:
noise removal

Image statistics (or, mathematically, how
can you tell image from noise?)

Noisy image

Clean image

Range [0, 255]
Ditns [384, 534]

Pixel representation
image histogram

bandpass filtered image

Range [-228, 227]
Dims [394, 598]

bandpassed representation
image histogram

ra—
hmnm-uwmnmuw@mw
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Pixel domain noise image and
histogram

Rangs 1 3364003, 11784007
D [304, 538)

Bandpass domain noise image and
histogram

Noise-corrupted full-freq and bandpass images

@ CArs BET

et EEEBAEE

A

But want
the
bandpass
image
histogram
to look like|

Bayes theorem

By definition of

P(X, y) = P(le) P(y) conditional probability

SO Using that twice

P(ﬁIY) P(y) = P(ylx) P(x)
an
P(xly) = P1(YIX) PO)TRY)

The parameters you
want to estimate

Constant w.r.t.

Likelihood [
parameters X.

function

What you observe Prior probability

Bayesian MAP estimator for clean bandpass

coefficient values

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem o
B
PXly) =KPX) P() y
p &
© N POy
P(ylx) ‘
P(xly) ) P(xly)
1

Esn-:mnm 00 50 o s 100 150

ra—
20 X0

Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

210"
9 -

By Bayes theorem
8

Pixly) =k P P(X)

5 Pyk)

2 P(xly)

ra—
hmnm-mmne:uwmmw
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Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

’xln
By Bayes theorem )

)
P(Xly) =k P(Y) P(x)

hmnm-uwmnmuw@mw

MAP estimate, X , as function of
observed coefficient value, y

~60 =30 o a0 L
Figure Z; Dayesian estimator {symmetrzed) for
the signal and noise histograms shown in figure 1.
Superim posed on the plot s a straight lne indicat
ing the identity function.

Simoncelli and Adelson, Noise Removal via

http://www-bes mit

)_pdfs/sit _noise pdf Bayesian Wavelet Coring

Noise removal results

Figure & Nois: coduction cxample. (a) Original image {comppeed {) mage costaminatd with aidiive Gnumisn
whit mote (3520, = 2.904 ). {<) Lmags rstord weiag, fromi- biad) Woemsr Bl (35 = 11 S8 E (4) Lmage rentonmd
silag (mnbbilad) Buymla wimstve EHR = JLEME). Slmoncelll and Adelson, Noise Removal via

http://www-bes.mit,

_noise.pdf Bayesian Wavelet Coring

Image texture

The Goal of Texture Synthesis
input image

True infinite) texture genérated image

. Given a finite sample of some texture, the
goal is to synthesize other samples from that

same texture
— The sample needs to be "large enough*

The Goal of Texture Analysis
input image

“Same” or
“different”

True (in inite) texture

genéted image
Compare textures and decide if they’re made of the
same “stuff”.

13



Pre-attentive texture discrimination

Pre-attentive texture discrimination

LM 1JLrr LT 414 1L+
CF JLr AT ARET
LM 1JdLrM T AT
JrLJ0LTTHLT
LM 1JLrr L THLEFEF
F JLMr AT L +--T
L 1der L4414 1+
JarcJgL4H- L1417

Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

Pre-attentive texture discrimination

L 1JeLrer gaJgcLnr
FaJerar Jer
L adoerer rdoer
Jaarecdgnaredn
L 1gLrer raer
FraaJerar1 Jernr
L adoerer adoer
JaaredraJaareadn

Pre-attentive texture discrimination

Same or different textures?

14



Julesz

« Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called

“textons”.

« It generally required a human to look at
the texture in order to decide what those
fundamental units were...

LLLL
LLLL

T T T1TT
T T T T

Influential paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson*#*

#* SRI David Sarnoff Research Center, Princeton,

New Jersey 08540, USA

## Media Lab and Department of Brain and Cognitive Science.
Massachusetts Institute of Technology, Cambridge.
Massachusets 02139, USA

Learn: use filters.

Bergen and Adelson, Nature 1988

Learn: use lots of filters, multi-ori&scale.
Malik and Perona

) aw

RS

Malik J, Perona P. Preattentive texture
discrimination with early vision
mechanisms. J OPT SOC AM A 7: (5) 923-
932 MAY 1990

Representing textures

* Textures are made up
of quite stylised
subelements, repeated
in meaningful ways

« Representation:

— find the subelements,
and represent their
statistics

« But what are the
subelements, and how
do we find them?

— recall normalized
correlation

— find subelements by
applying filters, looking at
the magnitude of the

¢ What filters?

— experience suggests
spots and oriented bars
at a variety of different
scales

— details probably don't
matter

« What statistics?

— within reason, the more
the merrier.

— Atleast, mean and
standard deviation

— better, various
conditional histograms.

15



Squared responses  Spatially blurred

vertical filter . .

image

blurred responses,
then categorize
texture based on
those two bits

>
-

horizontal filter

Threshold squared,

If matching the averaged squared filter
values is a good way to match a given
texture, then maybe matching the entire
marginal distribution (eg, the histogram) of
a filter's response would be even better.

Jim Bergen proposed this...

Pyramid-Based Texture Analysis/Synthesis

David J. Heeger' James R. Bergent
Stanford University SRI David Sarnoff Research Center

SIGGRAPH 1994

16



Histogram matching algorithm

Match-histogram (iml,im2)

iml-cdf = Make-cdf (iml)

im2-cdf = Make-cdf (im2)

inv-im2-cdf = Make-inverse-lookup-table (im2-cdf)

Loop for each pixel do

iml[pixel] =
Lookup (inv-im2-cdf,
Lookup (iml-cdf, iml [pixel] ))

“At this im1 pixel value, 10% of the im1 values are lower. What im2
pixel value has 10% of the im2 values below it?”

Heeger-Bergen texture synthesis algorithm

Match-texture(noise, texture)
Match-Histogram (noise,texture)
analysis-pyr = Make-Pyramid (texture)
Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr
for s-band in subbands of synthesis-pyr
do
Match-Histogram (s-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (noise,texture)

Alternate matching the histograms of all the subbands and matching
the histograms of the reconstructed images.

Learn: use filter marginal statistics.

Bergen and Heeger

red mappa weod. (M
K ad the syath,

Heeger/Bergen, Siggraph 1994

Bergen and Heeg

i

er results

o ST

Figare 3: I wack pair beft image i original and rght imagr i sysiheiie: sinom, irkdrscvw. ribbon, goven marble, pands fur,

slag sisme, igarm

et
qraph 1994

Bergen and Heeger failures

Figure & Examples of failires: wood grain and red coral

Figare 9: More [ailures: hay and marble

|_Heeger/Bergen Sigaraph 1904

More examples

Heeger/Bergen, Siggraph 1994

17



More examples

Synthetic surfaces

Heeger/Bergen, Siggraph 1994

Heeger/Bergen, Siggraph 1994

Synt

hetic surfaces

¥

Heeger/Bergen, Siggraph 1994

Sampling example
Analyze crossed
gratings...

Mg

f /
fininiigg ,"""'!wmm“mmm,,,
"

/ ] /
i s .‘.’.'.’.W)JJ“ S

Sampling example

Analyze crossed

gratings...

Analyze cross

18



Analyze crossed
gratings...

es
Wh;:r}c(tja?ved near
horizontal .
grating com
from?

pling example
Samp

)

F(A)
mmmmm
!!N!'Wi!Hiiil!H!iHWHWINUWHHN
Mg u1umw!!!ttt!!!!|u4mmttf!tmmumummmu
i i!!Wl4tutml|41mi!iimi!il4mu44tm4Hmmm!mmmm
iy t144iuuwm4tttttt1t4iii4i!w4u444141tmmummwmm
iy I Mummmm NI!i!Wl1|;umtilHumimmmwm
4itmiHmmmuwmim !!mi!!ilm4t14mmimmimmuw
UiiHmi4!imimuiUW!!WH!iWHlmiiHWHWIMHWIW!W
titt!tifit4i4ii!uuuu4tt4tititti41!imm;4uuuu4ummumimmw
H!!HilH!!H!!iM4!N!!Hl!H!!H!iU!|Mi4Hiimmmm_i_wim“
!!!|mttl!mtli4mf!iwumwmm““"
i
+ .
*F(B)
A)*
. F(
F(B)
C
.
-
g B
WpaSS(F(A)**F( ))
o ¢ Lo ~=F(C)
Kk B)
FA)**F(
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end

The Gaussian pyramid

Smooth with gaussians, because

— a gaussian*gaussian=another gaussian
Synthesis

—smooth and sample

Analysis

— take the top image

Gaussians are low pass filters, so repn is
redundant

Application to image compression

20



