6.098 Digital and Computational Photography 6.882 Advanced Computational Photography **Refocusing & Light Fields** Frédo Durand Bill Freeman

MIT - EECS

Final projects

- Send your slides by noon on Thrusday.
- Send final report

Wavefront coding

Is depth of field a blur?

- Depth of field is NOT a convolution of the image
- The circle of confusion varies with depth
- There are interesting occlusion effects
- (If you really want a convolution, there is one, but in 4D space... more soon)

CSA CSA

CSA CSA

Wavefront coding

- · Idea: deconvolution to deblur out of focus regions
- Convolution = filter (e.g. blur, sharpen)

From Macro Photos

- Sometimes, we can cancel a convolution by another convolution
 - Like apply sharpen after blur (kind of)
 - This is called deconvolution
- Best studied in the Fourier domain (of course!)
 - Convolution = multiplication of spectra
 - Deconvolution = multiplication by inverse spectrum

Deconvolution

La csa

dian CSA

- Assume we know blurring kernel k
 f' = f ⊗ k
 - **\rightarrow F**' = **F K** (in Fourier space)
- Invert by: F=F'/K (in Fourier space)
- Well-known problem with deconvolution: – Impossible to invert for ω where $K(\omega)=0$
 - Numerically unstable when $K(\omega)$ is small

Wavefront coding

- Idea: deconvolution to deblur out of focus regions
- **Problem 1: depth of field blur is not shift-invariant** – Depends on depth

CSA CSA

- →If depth of field is not a convolution, it's harder to use deconvolution ;-(
- Problem 2: Depth of field blur "kills information"
 - Fourier transform of blurring kernel has lots of zeros
 - Deconvolution is ill-posed

Wavefront coding

- Idea: deconvolution to deblur out of focus regions
- Problem 1: depth of field blur is not shift-invariant
- Problem 2: Depth of field blur "kills information"
- Solution: change optical system so that - Rays don't converge anymore
 - Image blur is the same for all depth
 - Blur spectrum does not have too many zeros
- How it's done
 - Phase plate (wave optics effect, diffraction)
 - Pretty much bends light
 - Will do things similar to spherical aberrations

The Plenoptic Function

Reconstruction, antialiasing, depth of field

Light field cameras

Plenoptic camera refocusing

Automultiscopic displays

Conclusions

