Bézier Curve and B-Spline Curve
 

 1. Bézier Curve

    1.1   Parabola
 
                   
                  convex combination of the adjacent points
                   b01(t) = (1-t) b0 + t b1
                   b11(t) = (1-t) b1 + t b2
                               t  in    [0, 1]
             make convex combination once again
                   b02(t)=(1-t)b01(t) + b11(t)
             point b02 goes along a curve from
                   bto b
            explicit form of curve b0,2 as a function of t (parabola):

                   b02(t)=(1-t)2 b + 2t (1-t) b + t2 b
 

 
    1.2   Generalize to order n Bézier Curve

                

            (de Casteljau Algorithm)

            Given: points b0 ,b1 , ..., bn, for any t in [0,1],
            set         bir (t) = (1-t) bir-1 (t) + t bi+1r-1 (t)
                          bi0 (t) = bi 
            Then  b0n (t)  is the point with parameter value t on the
            Bézier curve bn  .

            The polygon P formed by b0, ..., bn  is called the Bézier
            polygon, or control polygon of curve bn .
 

                    de Casteljau scheme
 
                    b0
               b1   b01
               b2   b11   b02
               b3   b21   b12   b03
 
 

     1.3   Explicit form of Bézier Curve

              Bézier curve with control points  P0 , ...,  Pn  :
                

               Bernstein Polynomials :
 
                  

                
 
 
        Bernstein Polynomials, the cubic case (n=3) :

                           
 
      1.4     Properties of Bézier Curve
 

          1.4.1    Convex Hull Property

                   For t in [0, 1], b0n (t)  lies in the convex hull of the control
                   polygon. This is because every intermediate point bir is a
                   convex combination of points  bir-1, bi+1r-1  .

          1.4.2    Endpoint interpolation

                               control at endpoint
                        its position,
                             first derivative,
                             second derivative, etc

             1.4.3  Shape Preservation

          1.4.4  Weistrass Theorem
 

 2.  B-Spline Curve

          2.1   Why Spline  ?

        2.2   Why Spline in Bézier Form  ?

        2.3   What is a Spline  ?
 
 

                 
 

        the continuous map of a collection of intervals into 3-D space .

        each interval is mapped into a polynomial segment.
 
       2.4  C1 and C2 continuity  of  B-Spline

               C0  continuity(positional): curve continuous at knot point
               C1  continuity(tangental):  curve differentiable at knot point
                 
       C2  continuity(curvature): curve doubly differentiable at knot point

                          
 

 
 
                            
 

 4.   NURBS (Non-Uniform Rational B-Splines)
 
       4.1   Specify a NURB

           4.1.1    Control Points and Knots 

                  Control Points : d0 , d1, ..., dL+n-1

                  Knot sequence (non-decreasing) : u0 , u1, ..., uL+2n-2

                  B-Spline defined over :    [ un-1 ,   uL+n-1 ]
 
 

           4.1.2    Explicit Form and Basis Functions

                  

                             

                          
 
 
 
                
 
                         
 
 

                if Knot Sequence becomes :  0,0,0,..,0,1,1,1,...,1
                B-Spline basis functions becomes Bernstein Polynomials .
 

       4.2   Rational Spline
 

                         equal weights
                      non-equal weights
 

                Specify weights of control points:  w0, w1, ...,  wL+n-1