Linear Programming in Subexpon
 Time

Linear Programming Algebraic

for $x, c \in \mathbb{R}^{d} ; b \in \mathbb{R}^{n} ; A \in \mathbb{R}^{(n \times d)}$ $\min c^{T} x$
subject to $A x \leq b$

Linear Programming Geometric

Goals

The Holy Grail

\Rightarrow polynomial time algorithm in unit-cost model

Previous Work

\Rightarrow polynomial time algorithm in bit-cost model
$O(d!n)$ time algorithm in unit-cost model (Seidel

Today

\Rightarrow subexponential time algorithm in unit-cost mode

Outline

\Rightarrow SolveLP1 — Clarkson (1988)
\Rightarrow SolveLP2 - Clarkson (1988)
\Rightarrow BasisLP - Matousek, Sharir and Welzl (1992 also Kalai (1992)

Combined Result: $O\left(d^{2} n+e^{O(\sqrt{d \log d})}\right)$
$\Rightarrow H \ldots \ldots \ldots . .$. set of n linear constraints.
$\Rightarrow v(H) \ldots \ldots \ldots$ optimum point subject to H.
\Rightarrow a basis......... minimal set B with $v(B)>-\infty$.
\Rightarrow a basis for $H \ldots$ basis $B \subseteq H$ s.t. $v(B)=v(H)$.

Note: the size of a basis is d.

Example

Random Sampling

\Rightarrow Randomly reduce large problem to small subprob
Solve small subproblem.
If solution solves large problem, you win.

\Rightarrow
Otherwise, get hints from wrong solution and try

Algorithm: SolveLP1

SolveLP1 (H)
$G:=\emptyset$
repeat
$R:=$ random subset of H of size r
$B:=$ SolveLP1 $(G \cup R)$
$V:=$ set of constraints violated by $v(I$
if $|V|$ is small enough, then $G:=G \cup V$ until $V=\emptyset$

$$
\begin{aligned}
& r=2 \text {, "small enough" }=1 \\
& \text { key: } R=\text { green } \quad V=\text { red } \quad G=\text { blue }
\end{aligned}
$$

$$
\begin{aligned}
r & =2 \text {, "small enough" }=1 \\
\text { key: } \mathrm{R} & =\text { green } \quad \mathrm{V}=\text { red } \quad \mathrm{G}=\text { blue }
\end{aligned}
$$

$$
\begin{aligned}
r & =2 \text {, "small enough" }=1 \\
\text { key: } \mathrm{R} & =\text { green } \quad V=\text { red } \quad \mathrm{G}=\text { blue }
\end{aligned}
$$

Analysis

Bounding the number of iterations until a succe

\Rightarrownumber of violated constraints is $n d / r$

$$
E[|V|]=n \operatorname{Pr}(\text { constraint is violated }) \leq n(d /(r+
$$

"small enough" $:=2 n d / r$
\Rightarrow number of iterations until a successful one is 2

$$
\operatorname{Pr}(|V| \geq 2 E[|V|])<1 / 2
$$

Algorithm: SolveLP1

SolveLP1 (H)
$G:=\emptyset$
repeat
$R:=$ random subset of H of size r
$B:=$ SolveLP1 $(G \cup R)$
$V:=$ set of constraints violated by $v(I$
if $|V| \leq 2 n d / r$, then $G:=G \cup V$
until $V=\emptyset$

Bounding the number of successful iterati

If no basis constraint is violated, then the solution must be the optimal solutio

In every successful iteration, a basis constraint is added to G !
number of successful iterations is d

Running time

\Rightarrow number of constraints in recursive call is at most

$$
r+|G| \leq r+d|V| \leq r+2 n d^{2} / r
$$

\Rightarrow running time is

$$
T_{1}(n) \leq 2 d T_{1}\left(r+2 n d^{2} / r\right)+O\left(d^{2} n\right)
$$

$$
r:=d \sqrt{2 n}
$$

\Rightarrow base case is $n=O\left(d^{2}\right)$

$$
n \leq d \sqrt{2 n} \Longrightarrow n \leq 2 d^{2}
$$

Algorithm: SolveLP1

SolveLP1(H)
if $n \leq 2 d^{2}$, then return solution
$G:=\emptyset$
repeat
$R:=$ random subset of H of size $d \sqrt{2 r}$
$B:=$ SolveLP1 $(G \cup R)$
$V:=$ set of constraints violated by $v(I$
if $|V| \leq \sqrt{2 n}$, then $G:=G \cup V$
until $V=\emptyset$

Analysis with Seidel

SolveLP1 (H)
if $n \leq 2 d^{2}$, then return $\operatorname{Seidel}(H)$
$G:=\emptyset$
repeat
$R:=$ random subset of H of size $d \sqrt{2 r}$
$B:=$ Seidel $(G \cup R)$
$V:=$ set of constraints violated by $v(I$
if $|V| \leq \sqrt{2 n}$, then $G:=G \cup V$
until $V=\emptyset$

$$
\begin{aligned}
& \text { Plug in Seidel } \\
& S(n, d)=O(d!n)
\end{aligned}
$$

\Rightarrow running time is $O\left(d^{2} n+d^{2} d!\sqrt{n}\right)$

$$
\begin{aligned}
T(n) & =2 d S(d \sqrt{n}, d)+O\left(d^{2} n\right) \\
& =O\left(d^{2} n+d^{2} d!\sqrt{n}\right)
\end{aligned}
$$

Reduce sample size

Instead of forcing the violated constraints, include them in random sample with higher prob

Algorithm: SolveLP2

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size r
$B:=$ SolveLP2 (R)
$V:=$ multiset of constraints violated by
if $|V|$ is small enough, then $H:=H \cup V$ until $V=\emptyset$

Analysis

Bounding the number of iterations until a succe
\Rightarrow number of violated constraints is $|H| d / r$
"small enough" $:=2|H| d / r$
\triangleleft number of iterations until a successful one is 2

Algorithm: SolveLP2

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size r
$B:=$ SolveLP2 (R)
$V:=$ multiset of constraints violated by
if $|V| \leq 2|H| d / r$, then $H:=H \cup V$
until $V=\emptyset$

Analysis

Bounding the number of successful iterati
Fix a basis B of H.

\Rightarrow
in each iteration, multiplicity of a constraint in B after $k d$ iterations, some constraint in B has mul at least 2^{k}
\Rightarrow in each iteration, size of H increases by $2|H| d / r$ after $k d$ iterations, $|H|$ is at most $n \exp \left(2 d^{2} / r\right)^{k}$

$$
|H| \leq n(1+2 d / r)^{k d}<n \exp \left(2 k d^{2} / r\right)
$$

$$
2^{k}<n \exp \left(2 d^{2} / r\right)^{k}
$$

Analysis

Bounding the number of successful iterati

$$
2^{k}<n \exp \left(2 d^{2} / r\right)^{k}
$$

algorithm will terminate when inequality is violat
\Rightarrow minimize r subject to $2 \geq \exp \left(2 d^{2} / r\right)$

$$
r=O\left(d^{2}\right)
$$

\Rightarrow minimize k subject to $2^{k} \geq n e^{k / 2}$

$$
k=O(\log n)
$$

Algorithm: SolveLP2

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size $4 d^{2}$
$B:=$ SolveLP2 (R)
$V:=$ multiset of constraints violated by
if $|V| \leq|H| / 2 d$, then $H:=H \cup V$
until $V=\emptyset$

Running Time

\Rightarrow running time is

$$
T_{2}(n) \leq O\left(d \log n T^{\prime}\left(d^{2}\right)+d^{2} n \log n\right)
$$

\Rightarrow base case is $n=O\left(d^{2}\right)$

Algorithm: SolveLP2

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size $4 d^{2}$
$B:=$ solution for R
$V:=$ multiset of constraints violated by
if $|V| \leq|H| / 2 d$, then $H:=H \cup V$
until $V=\emptyset$

Analysis with SolveLP1 and Seic

SolveLP1(H)
if $n \leq 2 d^{2}$, then return SolveLP2(H)
$G:=\emptyset$
repeat
$R:=$ random subset of H of size $d \sqrt{2 r}$
$B:=$ SolveLP2 $(G \cup R)$
$V:=$ set of constraints violated by $v(I$
if $|V| \leq \sqrt{2 n}$, then $G:=G \cup V$
until $V=\emptyset$

Analysis with SolveLP1 and Sei

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size $4 d^{2}$
$B:=\operatorname{Seidel}(R)$
$V:=$ multiset of constraints violated by
if $|V| \leq|H| / 2 d$, then $H:=H \cup V$
until $V=\emptyset$

Plug in Seidel and plug into SolveLP1

$$
S(n, d)=O(d!n)
$$

\Rightarrow running time is $O\left(d!d^{3} \log n+d^{3} \sqrt{n} \log n+d^{2} n\right)$

$$
\begin{aligned}
T(n) & =O\left(d T_{2}(d \sqrt{n})+d^{2} n\right) \\
& =O\left(d\left(d \log n S\left(d^{2}, d\right)+d^{2} \sqrt{n} \log n\right)+d\right. \\
& =O\left(d!d^{3} \log n+d^{3} \sqrt{n} \log n+d^{2} n\right)
\end{aligned}
$$

Solving Small LPs

Seidel (H)
if $|H|=d$, then return H else

Pick a random constraint $c \in H$
$B:=\operatorname{Seidel}(H-\{c\})$
if $v(B)$ does not violate c, then return else project constraints onto c and sols
\Rightarrow running time is $O(d!n)$
$S(n, d)=S(n-1, d)+(d / n) S(n-1, d-1)+O$

Algorithm: BasisLP

Modify Seidel!

BasisLP (H, B)
Pick a random constraint in $c \in H-B$
$B:=\operatorname{BasisLP}(H-\{c\}, B)$
if $v(B)$ does not violate c, then return else return BasisLP $(H$, Basis $(B \cup\{c\}))$

Define a parameter that captures the quality of th
\Rightarrow hint quality k is (roughly) $d-\left|B_{\text {hint }} \cap B_{\text {real }}\right|$

$$
T(n, k) \leq T(n-1, k)+\frac{1}{n-d} \sum_{i=1}^{k}(1+T(n, k-
$$

\Rightarrow running time is $O(n d \exp (\sqrt{d \ln (n+1)}))$

Use BasisLP as base of recursion!

\Rightarrow running time is $O\left(d^{2} n+e^{O(\sqrt{d \log d})}\right)$

