
Linear Programming in Subexponential

Time



Linear Programming Algebraic View

for x, c ∈ � d; b ∈ � n; A ∈ � (n×d)

min cTx

subject to Ax ≤ b
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Linear Programming Geometric View
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Goals

The Holy Grail

polynomial time algorithm in unit-cost model

Previous Work

polynomial time algorithm in bit-cost model

O(d!n) time algorithm in unit-cost model (Seidel)

Today

subexponential time algorithm in unit-cost model
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Outline

SolveLP1 — Clarkson (1988)

SolveLP2 — Clarkson (1988)

BasisLP — Matousek, Sharir and Welzl (1992)

also Kalai (1992)

Combined Result: O(d2n + eO(
√

d log d))
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Definitions

H . . . . . . . . . . . . . set of n linear constraints.

v(H) . . . . . . . . . . . optimum point subject to H.

a basis . . . . . . . . . minimal set B with v(B) > −∞.

a basis for H . . . basis B ⊆ H s.t. v(B) = v(H).

Note: the size of a basis is d.
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Example
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Random Sampling

Randomly reduce large problem to small subproblem.

Solve small subproblem.

If solution solves large problem, you win.

Otherwise, get hints from wrong solution and try again.
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Algorithm: SolveLP1

SolveLP1(H)

G := ∅
repeat

R := random subset of H of size r

B := SolveLP1(G ∪ R)

V := set of constraints violated by v(B)

if |V | is small enough, then G := G ∪ V

until V = ∅
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Example

r = 2, “small enough” = 1

key: R = green V = red G = blue

9



Example

r = 2, “small enough” = 1

key: R = green V = red G = blue

10



Example

r = 2, “small enough” = 1

key: R = green V = red G = blue

11



Example

r = 2, “small enough” = 1

key: R = green V = red G = blue

12



Example

r = 2, “small enough” = 1

key: R = green V = red G = blue
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Analysis

Bounding the number of iterations until a successful one

number of violated constraints is nd/r

E[|V |] = nPr(constraint is violated) ≤ n(d/(r + 1))

“small enough” := 2nd/r

number of iterations until a successful one is 2

Pr(|V | ≥ 2E[|V |]) < 1/2

14



Algorithm: SolveLP1

SolveLP1(H)

G := ∅
repeat

R := random subset of H of size r

B := SolveLP1(G ∪ R)

V := set of constraints violated by v(B)

if |V | ≤ 2nd/r, then G := G ∪ V

until V = ∅
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Analysis

Bounding the number of successful iterations

If no basis constraint is violated,

then the solution must be the optimal solution!

In every successful iteration,

a basis constraint is added to G!

number of successful iterations is d
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Analysis

Running time

number of constraints in recursive call is at most r +2nd2/r

r + |G| ≤ r + d|V | ≤ r + 2nd2/r

running time is

T1(n) ≤ 2dT1(r + 2nd2/r) + O(d2n)

r:=d
√

2n

base case is n = O(d2)

n ≤ d
√

2n =⇒ n ≤ 2d2

17



Algorithm: SolveLP1

SolveLP1(H)

if n ≤ 2d2, then return solution

G := ∅
repeat

R := random subset of H of size d
√

2n

B := SolveLP1(G ∪ R)

V := set of constraints violated by v(B)

if |V | ≤
√

2n, then G := G ∪ V

until V = ∅
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Analysis with Seidel

SolveLP1(H)

if n ≤ 2d2, then return Seidel(H)

G := ∅
repeat

R := random subset of H of size d
√

2n

B := Seidel(G ∪ R)

V := set of constraints violated by v(B)

if |V | ≤
√

2n, then G := G ∪ V

until V = ∅

19



Analysis with Seidel

Plug in Seidel

S(n, d) = O(d!n)

running time is O(d2n + d2d!
√

n)

T (n) = 2dS(d
√

n, d) + O(d2n)

= O(d2n + d2d!
√

n)
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Improving the Algorithm

Reduce sample size

Instead of forcing the violated constraints,

include them in random sample with higher probability!
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Algorithm: SolveLP2

H is a multiset

SolveLP2(H)

repeat

R := random subset of H of size r

B := SolveLP2(R)

V := multiset of constraints violated by v(B)

if |V | is small enough, then H := H ∪ V

until V = ∅
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Analysis

Bounding the number of iterations until a successful one

number of violated constraints is |H|d/r

“small enough” := 2|H|d/r

number of iterations until a successful one is 2
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Algorithm: SolveLP2

H is a multiset

SolveLP2(H)

repeat

R := random subset of H of size r

B := SolveLP2(R)

V := multiset of constraints violated by v(B)

if |V | ≤ 2|H|d/r, then H := H ∪ V

until V = ∅
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Analysis

Bounding the number of successful iterations

Fix a basis B of H.

in each iteration, multiplicity of a constraint in B is doubled

after kd iterations, some constraint in B has multiplicity

at least 2k

in each iteration, size of H increases by 2|H|d/r

after kd iterations, |H| is at most n exp(2d2/r)k

|H| ≤ n(1 + 2d/r)kd < n exp(2kd2/r)

2k < n exp(2d2/r)k
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Analysis

Bounding the number of successful iterations

2k < n exp(2d2/r)k

algorithm will terminate when inequality is violated

minimize r subject to 2 ≥ exp(2d2/r)

r = O(d2)

minimize k subject to 2k ≥ nek/2

k = O(logn)
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Algorithm: SolveLP2

H is a multiset

SolveLP2(H)

repeat

R := random subset of H of size 4d2

B := SolveLP2(R)

V := multiset of constraints violated by v(B)

if |V | ≤ |H|/2d, then H := H ∪ V

until V = ∅
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Analysis

Running Time

running time is

T2(n) ≤ O(d lognT ′(d2) + d2n logn)

base case is n = O(d2)
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Algorithm: SolveLP2

H is a multiset

SolveLP2(H)

repeat

R := random subset of H of size 4d2

B := solution for R

V := multiset of constraints violated by v(B)

if |V | ≤ |H|/2d, then H := H ∪ V

until V = ∅
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Analysis with SolveLP1 and Seidel

SolveLP1(H)

if n ≤ 2d2, then return SolveLP2(H)

G := ∅
repeat

R := random subset of H of size d
√

2n

B := SolveLP2(G ∪ R)

V := set of constraints violated by v(B)

if |V | ≤
√

2n, then G := G ∪ V

until V = ∅
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Analysis with SolveLP1 and Seidel

H is a multiset

SolveLP2(H)

repeat

R := random subset of H of size 4d2

B := Seidel(R)

V := multiset of constraints violated by v(B)

if |V | ≤ |H|/2d, then H := H ∪ V

until V = ∅
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Analysis with SolveLP1 and Seidel

Plug in Seidel and plug into SolveLP1

S(n, d) = O(d!n)

running time is O(d!d3 logn + d3√n logn + d2n)

T (n) = O(dT2(d
√

n) + d2n)

= O(d(d lognS(d2, d) + d2√n logn) + d2n)

= O(d!d3 logn + d3√n logn + d2n)
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Solving Small LPs

Seidel(H)

if |H| = d, then return H

else

Pick a random constraint c ∈ H

B := Seidel(H − {c})
if v(B) does not violate c, then return B

else project constraints onto c and solve

running time is O(d!n)

S(n, d) = S(n − 1, d) + (d/n)S(n − 1, d − 1) + O(d2)
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Algorithm: BasisLP

Modify Seidel!

BasisLP(H,B)

Pick a random constraint in c ∈ H − B

B := BasisLP(H − {c},B)

if v(B) does not violate c, then return B

else return BasisLP(H,Basis(B ∪ {c}))
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Analysis Idea

Define a parameter that captures the quality of the hint!

hint quality k is (roughly) d − |Bhint ∩ Breal|

T (n, k) ≤ T (n − 1, k) +
1

n − d

k
∑

i=1

(1 + T (n, k − i))

running time is O

(

nd exp

(

√

d ln(n + 1)

))

35



Conclusion

Use BasisLP as base of recursion!

running time is O(d2n + eO(
√

d log d))
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