Linear Programming in Subexpon

Time

@ Linear Programming Algebraic

4 N
for x,c € Rd; beR": Ac R(nxd)

min clz

subject to Ax <b
~ y

@ Linear Programming Geometric

% Goals

The Holy Grail
E) polynomial time algorithm in unit-cost model

Previous Work
E) polynomial time algorithm in bit-cost model

|:> O(d!n) time algorithm in unit-cost model (Seidel

Today
I:> subexponential time algorithm in unit-cost mode

W outine

E) SolveLP1 — Clarkson (1988)
B SolveLP2 — Clarkson (1988)
E) BasisLP — Matousek, Sharir and Welzl (199

also Kalai (1992)

Combined Result: O(d?n + 0(Vdlogd))

\‘@ Definitions

D H............. set of n linear constraints.
D v(H)........... optimum point subject to H.
I:> a basis......... minimal set B with v(B) > —oco.

E) a basis for H... basis BC H s.t. v(B) = v(H).

Note: the size of a basis is d.

& 888

Random Sampling

Randomly reduce large problem to small subprob
Solve small subproblem.
If solution solves large problem, you win.

Otherwise, get hints from wrong solution and try

% Algorithm: SolveLP1

o

SolveLP1(H)
G =10
repeat
R := random subset of H of size r
B := SolveLP1(GUR)
V .= set of constraints violated by v(/

if |V| is small enough, then G := GU
until V=10

@ Example

r =2, “small enough” =1
key: V = red G = blue

r =2, “small enough” =1
key: V = red G = blue

\% Example

r =2, “small enough” =1
key: V = red G = blue

r =2, “small enough” =1
key: V = red G = blue

\% Example

r =2, “small enough” =1
key: V = red G = blue

W% Anaiysis

Bounding the number of iterations until a succe

|:> number of violated constraints is nd/r

E[|V]|] = nPr(constraint is violated) < n(d/(r +

“small enough” = 2nd/r

|:> number of iterations until a successful one is 2

Pr(lV] = 2E[[V[]) <1/2

Algorithm: SolvelLP1

SolveLP1(H)
G =10
repeat
R := random subset of H of size r
B := SolveLP1(GUR)
V .= set of constraints violated by v(/
if |V| <2nd/r, then G .= GUYV
_ until V=10

W% Anaiysis

Bounding the number of successful iterati

If no basis constraint is violated,
then the solution must be the optimal solutio

In every successful iteration,
a basis constraint is added to Gl

I:> number of successful iterations is d

% Analysis

Running time
I:> number of constraints in recursive call is at most

r+ |G| <r+dV|<r42nd?/r

|:> running time is
T1(n) < 2dTy(r 4 2nd?/r) + O(d?n)

r.=dv2n

) base case is n = O(d?)
ngdv2n=:>n§2d2

% Algorithm: SolveLP1

/S

olveLP1(H)
if n < 2d?2, then return solution
G =10
repeat
R := random subset of H of size d/21
B := SolveLP1(GUR)
V .= set of constraints violated by v(/
if |V| <+2n, then G := GUV
_ until V=10

Y% Analysis with Seidel

/SolveLPl(H)
if n < 2d?, then return Seidel(H)
G =10
repeat
R := random subset of H of size dv/21
B = Seidel(GU R)
V .= set of constraints violated by v(/
if [V| <+2n, then G := GUV
_ until V=20

% Analysis with Seide

Plug in Seidel
S(n,d) = O(d'n)

E) running time is O(d?n + d2d!\/n)

2dS(dv/n,d) + O(d?n)
O(d*n + d?d!\/n)

T(n)

Improving the Algorithm

Reduce sample size

Instead of forcing the violated constraints,
include them in random sample with higher prob:

@ Algorithm: Solvel P2

H is a multiset

SolvelLP2(H)
repeat
R := random subset of H of size r
B := SolveLP2(R)
V = multiset of constraints violated by -
it |V| is small enough, then H := HUV

\ until V=290

% Analysis

Bounding the number of iterations until a succe

E) number of violated constraints is |H|d/r

4)

“small enough” = 2|H|d/r

. J

I:> number of iterations until a successful one is 2

Algorithm: SolvelLP2

H is a multiset

SolvelLP2(H)
repeat
R := random subset of H of size r
B := SolveLP2(R)
V = multiset of constraints violated by -
if |V| <2|H|d/r, then H .= HUV
\ until V=290

W Analysis

Bounding the number of successful iterati
Fix a basis B of H.

|:> in each iteration, multiplicity of a constraint in B
I:> after kd iterations, some constraint in B has mul
at least 2%

|:> in each iteration, size of H increases by 2|H|d/r
) after kd iterations, |H| is at most nexp(2d2/r)k

|H| < n(1 4+ 2d/r)* < nexp(2kd? /r)

2k <« nexp(2d2/r)k

W Analysis

Bounding the number of successful iterati

2k <« nexp(2d2/r)k

|:> algorithm will terminate when inequality is violate

) minimize r subject to 2 > exp(2d2?/r)

r = O(d?)

E) minimize k subject to 2k > nek/2

k= O(logn)

Algorithm: SolvelLP2

H is a multiset

SolvelLP2(H)
repeat
R := random subset of H of size 4d?
B := SolveLP2(R)
V = multiset of constraints violated by -
if |V|<|H|/2d, then H := HUV
\ until V=290

W% Anabvss

Running Time

|:> running time is

T>(n) < O(dlognT’(d?) + d?nlogn)

) base case is n = O(d?)

Algorithm: SolvelLP2

H is a multiset

SolvelLP2(H)
repeat

R := random subset of H of size 4d?
B := solution for R

V = multiset of constraints violated by -
it |V| < |H|/2d, then H :== HUYV
\ until V=290

Analysis with SolvelLP1 and Seic

/S

olveLP1(H)
if n < 2d?, then return SolvelLP2(H)
G =10
repeat
R := random subset of H of size dv/21
B = SolveLP2(G U R)
V .= set of constraints violated by v(/
if [V| <+2n, then G := GUV
_ until V=20

\‘% Analysis with SolvelLP1 and Seic

H is a multiset

SolvelLP2(H)
repeat
R := random subset of H of size 4d?
B := Seidel(R)
V = multiset of constraints violated by -
if |V|<|H|/2d, then H := HUV
\ until V=290

Analysis with SolvelLP1 and Seic

Plug in Seidel and plug into SolvelLP1
S(n,d) = O(d'n)

) running time is O(d!d3logn + d3\/nlogn + d2n)

O(dT>(dv/n) + d*n)
O(d(dlognS(d?,d) + d*/nlogn) + d
O(d'd3logn + d3v/nlogn + d°n)

T(n)

Solving Small LPs

Seidel(H)
if |H| =d, then return H
else
Pick a random constraint ce€ H
B := Seidel(H — {c})
if v(B) does not violate ¢, then return

\ else project constraints onto ¢ and sol

|:> running time is O(d!n)
S(n,d) =Sn—-1,d)+ (d/n)S(n—1,d—1)+ O

Algorithm: BasisLP

Modify Seidel!

-
BasisLP(H,B)

Pick a random constraint in ce H — B
B := BasisLP(H — {c},B)

if v(B) does not violate ¢, then return F
else return BasisLP(H,Basis(B U {c}))

Analysis Idea

Define a parameter that captures the quality of th

E) hint quality k is (roughly) d — | Bhint N Breall

k
T(n,k)ST(n—l,k)-l-% Z(l—l—T(n,k—ﬂ
n—di=1

E) running time is O (ndeXD (\/dm(n_l_ 1))>

W% Concluson

Use BasisLLP as base of recursion!

) running time is O(d2n 4 ¢O(Vdlogd))

