Linear Programming in Subexponential Time

for
$$x, c \in \mathbb{R}^d$$
; $b \in \mathbb{R}^n$; $A \in \mathbb{R}^{(n \times d)}$

min $c^T x$

subject to $Ax \leq b$

The Holy Grail

polynomial time algorithm in unit-cost model

Previous Work

- polynomial time algorithm in bit-cost model
- O(d!n) time algorithm in unit-cost model (Seidel)

Today

sube

subexponential time algorithm in unit-cost model

Algorithm SolveLP1 - Clarkson

Algorithm SolveLP2 - Clarkson

Result: $O(d^2n + e^{O(\sqrt{d \log d})})$

- v(H)..... optimum point subject to H
- \Rightarrow a basis for H ... minimal set B of constraints s.t.

v(B) = v(H).

Note: the size of a basis is d.

Randomly reduce large problem to small subproblem.

- Solve small subproblem.
- If solution solves large problem, you win.

Otherwise, get hints from wrong solution and try again.

SolveLP1(H) $G := \emptyset$ repeat R := random subset of H of size r $v := SolveLP1(G \cup R)$ V := set of constraints violated by vif |V| is small enough, $G := G \cup V$ until $V = \emptyset$

Bounding the number of iterations until a successful one

number of violated constraints is nd/r

 $E[|V|] = n \operatorname{Pr}(constraint \ is \ violated) \le n(d/(r+1))$

"small enough" := 2nd/r

number of iterations until a successful one is 2

 $\Pr(|V| \geq 2E[|V|]) < 1/2$

Bounding the number of successful iterations

13

number of successful iterations is d

Running time

number of constraints in recursive call is $2nd^2/r$

$$r + |G| = r + d|V| = r + 2nd^2/r$$

running time is

$$T_1(n) \le 2dT_1(r + 2nd^2/r) + O(d^2n)$$

$$r:=d\sqrt{2n}$$

base case is $n = O(d^2)$

$$n = d\sqrt{2n} \Longrightarrow n = 2d^2$$

Plug in Seidel

S(n,d) = O(d!n)

$$T_1(n) = 2dS(d\sqrt{n}, d) + O(d^2n)$$

= $O(d^2n + d^2d!\sqrt{n})$

Reduce sample size

Instead of forcing the violated constraints, include them in random sample with higher probability!

H is a multiset

Bounding the number of iterations until a successful one

number of violated constraints is |H|d/r

"small enough" := 2|H|d/r

number of iterations until a successful one is 2

Bounding the number of successful iterations

Fix a basis B of H.

in one iteration, size of H increases by 2|H|d/rin kd iterations, |B| is at most $n \exp(2d^2/r)^k$

 $|B| \le |H| \le n(1 + 2d/r)^{kd} < n \exp(2kd^2/r)$

Bounding the number of successful iterations

$$2^k < n \exp(2d^2/r)^k$$

minimize r subject to $2 \ge exp(2d^2/r)$

$$r = O(d^2)$$

minimize k subject to $2^k \ge ne^{k/2}$

k = O(logn)

Running Time

$$T_2(n) \le O(d \log n T_2(d^2) + d^2 n \log n)$$

base case is $n = O(d^2)$

Plug in Seidel and plug into SolveLP1

S(n,d) = O(d!n)

running time is $O(d!d^3 \log n + d^3 \sqrt{n} \log n + d^2 n)$

$$T(n) = O(dT_2(d\sqrt{n}) + d^2n) = O(d(d\log nS(d^2, d) + d^2\sqrt{n}\log n) + d^2n) = O(d!d^3\log n + d^3\sqrt{n}\log n + d^2n)$$

Modify Seidel!

```
Seidel(H)

if |H| = d, return H

else

Pick a random constraint h \in H

B := \text{Seidel}(H - \{h\})

if B violates h, project constraints onto h and solve

else return B
```


SolveLP3(H,B)

Pick a random constraint in $h \in H - B$ $B := \text{SolveLP3}(H - \{h\}, B)$ if h does not violate B, return Belse return SolveLP3(H, Basis($B \cup \{h\}$))

