Linear Programming in Subexponential Time

Linear Programming Algebraic View

> for $x, c \in \mathbb{R}^{d} ; b \in \mathbb{R}^{n} ; A \in \mathbb{R}^{(n \times d)}$ $\min c^{T} x$
> subject to $A x \leq b$

Goals

The Holy Grail

\Rightarrow polynomial time algorithm in unit-cost model

Previous Work

\Rightarrow polynomial time algorithm in bit-cost model
$\Rightarrow O(d!n)$ time algorithm in unit-cost model (Seidel)

Today

\Rightarrow subexponential time algorithm in unit-cost model

Outline

\Rightarrow Algorithm SolveLP1-Clarkson
Algorithm SolveLP2 - Clarkson
Algorithm SolveLP3 - Matousek, Sharir and Welzl; also Kalai

Result: $O\left(d^{2} n+e^{O(\sqrt{d \log d})}\right)$

Definitions

$\Rightarrow H \ldots \ldots \ldots .$. set of n linear constraints
$\Rightarrow v(H) \ldots \ldots .$. . optimum point subject to H
\Rightarrow a basis for $H \ldots$ minimal set B of constraints s.t.

$$
v(B)=v(H)
$$

Note: the size of a basis is d.

Random Sampling

Randomly reduce large problem to small subproblem.
\Rightarrow Solve small subproblem.
\Rightarrow If solution solves large problem, you win.
\Rightarrow Otherwise, get hints from wrong solution and try again.

Algorithm: SolveLP1

SolveLP1(H)
$G:=\emptyset$
repeat
$R:=$ random subset of H of size r
$v:=$ SolveLP1 $(G \cup R)$
$V:=$ set of constraints violated by v
if $|V|$ is small enough, $G:=G \cup V$
until $V=\emptyset$
$r=2$, "small enough" $=1$

8.
$r=2$, "small enough" $=1$

$$
r=2, " \text { small enough" }=1
$$

$$
r=2, " s m a l l \text { enough" }=1
$$

Analysis

Bounding the number of iterations until a successful one
number of violated constraints is $n d / r$

$$
E[|V|]=n \operatorname{Pr}(\text { constraint is violated }) \leq n(d /(r+1))
$$

$$
\text { "small enough" }:=2 n d / r
$$

\Rightarrow number of iterations until a successful one is 2

$$
\operatorname{Pr}(|V| \geq 2 E[|V|])<1 / 2
$$

Analysis

Bounding the number of successful iterations

\Rightarrow number of successful iterations is d

Analysis

Running time

\Rightarrow number of constraints in recursive call is $2 n d^{2} / r$

$$
r+|G|=r+d|V|=r+2 n d^{2} / r
$$

\Rightarrow running time is

$$
T_{1}(n) \leq 2 d T_{1}\left(r+2 n d^{2} / r\right)+O\left(d^{2} n\right)
$$

$$
r:=d \sqrt{2 n}
$$

\Rightarrow base case is $n=O\left(d^{2}\right)$

$$
n=d \sqrt{2 n} \Longrightarrow n=2 d^{2}
$$

Analysis

Plug in Seidel

$$
S(n, d)=O(d!n)
$$

\Rightarrow running time of SloveLP1 is $O\left(d^{2} n+d^{2} d!\sqrt{n}\right)$

$$
\begin{aligned}
T_{1}(n) & =2 d S(d \sqrt{n}, d)+O\left(d^{2} n\right) \\
& =O\left(d^{2} n+d^{2} d!\sqrt{n}\right)
\end{aligned}
$$

Improving the Algorithm

Reduce sample size

Instead of forcing the violated constraints, include them in random sample with higher probability!

Algorithm: SolveLP2

H is a multiset

SolveLP2(H)
repeat
$R:=$ random subset of H of size r
$v:=$ SolveLP2 (R)
$V:=$ multiset of constraints violated by v
if $|V|$ is small enough, then $H:=H \cup V$
until $V=\emptyset$

Analysis

Bounding the number of iterations until a successful one

\Rightarrow number of violated constraints is $|H| d / r$

\Rightarrow number of iterations until a successful one is 2

Analysis

Bounding the number of successful iterations

Fix a basis B of H.

\Rightarrowin one iteration, multiplicity of a constraint in B is doubled in $k d$ iterations, $|B|$ is at least 2^{k}
in one iteration, size of H increases by $2|H| d / r$
in $k d$ iterations, $|B|$ is at most $n \exp \left(2 d^{2} / r\right)^{k}$

$$
|B| \leq|H| \leq n(1+2 d / r)^{k d}<n \exp \left(2 k d^{2} / r\right)
$$

Analysis

Bounding the number of successful iterations

$$
2^{k}<n \exp \left(2 d^{2} / r\right)^{k}
$$

algorithm will terminate when inequality is violated minimize r subject to $2 \geq \exp \left(2 d^{2} / r\right)$

$$
r=O\left(d^{2}\right)
$$

\Rightarrow minimize k subject to $2^{k} \geq n e^{k / 2}$

$$
k=O(\log n)
$$

Analysis

Running Time

running time is

$$
T_{2}(n) \leq O\left(d \log n T_{2}\left(d^{2}\right)+d^{2} n \log n\right)
$$

\Rightarrow base case is $n=O\left(d^{2}\right)$

Analysis

Plug in Seidel and plug into SolveLP1

$$
S(n, d)=O(d!n)
$$

\Rightarrow running time is $O\left(d!d^{3} \log n+d^{3} \sqrt{n} \log n+d^{2} n\right)$

$$
\begin{aligned}
T(n) & =O\left(d T_{2}(d \sqrt{n})+d^{2} n\right) \\
& =O\left(d\left(d \log n S\left(d^{2}, d\right)+d^{2} \sqrt{n} \log n\right)+d^{2} n\right) \\
& =O\left(d!d^{3} \log n+d^{3} \sqrt{n} \log n+d^{2} n\right)
\end{aligned}
$$

Solving Small LPS

Modify Seidel!

Seidel (H)
if $|H|=d$, return H
else
Pick a random constraint $h \in H$
$B:=$ Seidel $(H-\{h\})$
if B violates h, project constraints onto h and solve else return B

Algorithm: SolveLP3

SolveLP3 (H, B)
Pick a random constraint in $h \in H-B$
$B:=$ SolveLP3 $(H-\{h\}, B)$
if h does not violate B, return B
else return SolveLP3 $(H, \operatorname{Basis}(B \cup\{h\}))$

