Linear Programming in Subexponential

Time

@ Linear Programming Algebraic View

4 N
for x,c € Rd; beR" Ac R(nxd)

min ¢Lz

subject to Az <b
- y,

@ Linear Programming Geometric View

W Goals

The Holy Grail
E) polynomial time algorithm in unit-cost model

Previous Work
E) polynomial time algorithm in bit-cost model

E) O(d!'n) time algorithm in unit-cost model (Seidel)

Today
I:> subexponential time algorithm in unit-cost model

m

W outine

|:> Algorithm SolvelLP1 - Clarkson
@) Algorithm SolveLP2 - Clarkson

|:> Algorithm SolvelLLP3 - Matousek, Sharir and Welzl; also Kalai

Result: O(d?n + ¢O(vdlogd))

—‘)

D H............. set of n linear constraints

D o(H)........... optimum point subject to H
) a basis for H... minimal set B of constraints s.t.
v(B) = v(H).

Note: the size of a basis is d.

—5)

@ Random Sampling

Randomly reduce large problem to small subproblem.
Solve small subproblem.
If solution solves large problem, you win.

Otherwise, get hints from wrong solution and try again.

& 838

@ Algorithm: SolvelLP1

SolveLP1(H) A
G:=10
repeat
R := random subset of H of size r
v := SolveLP1(G U R)
V = set of constraints violated by v
if |V is small enough, G .= GUV
_ until V=10 J

m

r =2, “small enough” =1

r =2, “small enough” =1

/,

;‘% Example

r =2, “small enough” =1

Example

\K

r =2, “small enough” =1

%

W% Anabsis

Bounding the number of iterations until a successful one

|:> number of violated constraints is nd/r

E[|V|] = nPr(constraint is violated) < n(d/(r + 1))

“small enough” = 2nd/r

I:> number of iterations until a successful one is 2

Pr(lV] = 2E[|V]]) <1/2

—Egl

W% Anabsis

Bounding the number of successful iterations

E) number of successful iterations is d

W% Anabsis

Running time
I:> number of constraints in recursive call is 2nd?/r

r+|Gl=r+dV|=r+2nd*/r

|:> running time is
Ty (n) < 2dTy (r 4 2nd?/r) + O(d?n)

r.=dv2n

@) base case is n = O(d?)
n = dv2n = n = 2d°

W Anaiysis

Plug in Seidel
S(n,d) = O(d'n)

@) running time of SloveLP1 is O(d?n + d2d!\/n)

2dS(dv/n,d) + O(d’n)
O(d?n + d°dl\/n)

T1(n)

Y 5

@ Improving the Algorithm

Reduce sample size

Instead of forcing the violated constraints,
include them in random sample with higher probability!

@ Algorithm: SolvelLP2

H is a multiset

~
SolvelLP2(H)
repeat
R := random subset of H of size r
v .= SolveLP2(R)
V .= multiset of constraints violated by v
if |V| is small enough, then H := HUV
\ until V=290)

Y | 7

W Anaiysis

Bounding the number of iterations until a successful one

E) number of violated constraints is |H|d/r

4)

“small enough” = 2|H|d/r

. J

I:> number of iterations until a successful one is 2

W% Anabsis

Bounding the number of successful iterations

Fix a basis B of H.

@) in one iteration, multiplicity of a constraint in B is doubled
) in kd iterations, |B| is at least 2%

@) in one iteration, size of H increases by 2|H|d/r
E) in kd iterations, |B| is at most nexp(2d2/r)k

1B| < |H| < n(1+ 2d/r)* < nexp(2kd?/r)

W Analysis

Bounding the number of successful iterations

2k < nexp(2d?/r)k

@) algorithm will terminate when inequality is violated

) minimize r subject to 2 > exp(2d2?/r)

r = O(d?)

E) minimize k subject to 2k > nek/2

k = O(logn)

W% Anabsis

Running Time

E) running time is

T>(n) < O(dlognTs(d?) + d?nlogn)

) base case is n = O(d?)

Y > |

W Analysis

Plug in Seidel and plug into SolvelLLP1
S(n,d) = O(d'n)
) running time is O(d!d3logn 4 d3\/nlogn + d2n)

O(dT»(dv/n) + d*n)
O(d(dlognS(d?,d) + d*+/nlogn) + d°n)
O(d'd3logn + d3/nlogn + d°n)

—égl

T(n)

@ Solving Small LPs

Modify Seidel!

Seidel(H)
if |H| =d, return H
else
Pick a random constraint he H
B := Seidel(H — {h})
if B violates h, project constraints onto A and solve
else return B

Y 2 3

\% Algorithm: SolvelLP3

SolvelLP3(H,B)
Pick a random constraint in he H — B

B := SolveLP3(H — {h},B)
if h does not violate B, return B
else return SolvelLP3(H,Basis(B U {h}))

