Delaunay Triangulations

Presented by Glenn Eguchi
6.838 Computational Geometry
October 11, 2001
Motivation: Terrains

- Set of data points $A \subset \mathbb{R}^2$
- Height $f(p)$ defined at each point p in A
- How can we most naturally approximate height of points not in A?
Option: Discretize

- Let \(f(p) = \) height of nearest point for points not in \(A \)
- Does not look natural
Better Option: Triangulation

- Determine a *triangulation* of A in R2, then raise points to desired height
- *triangulation*: planar subdivision whose bounded faces are triangles with vertices from A
Triangulation: Formal Definition

- **maximal planar subdivision**: a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity
- **triangulation** of set of points P: a maximal planar subdivision whose vertices are elements of $P
Triangulation is made of triangles

- Outer polygon must be convex hull
- Internal faces must be triangles, otherwise they could be triangulated further
Triangulation Details

For P consisting of n points, all triangulations contain $2n-2-k$ triangles, $3n-3-k$ edges

- $n =$ number of points in P
- $k =$ number of points on convex hull of P
Terrain Problem, Revisited

- Some triangulations are “better” than others
- Avoid skinny triangles, i.e. maximize minimum angle of triangulation
Angle Optimal Triangulations

- Create *angle vector* of the sorted angles of triangulation T, $(\alpha_1, \alpha_2, \alpha_3, \ldots \alpha_{3m}) = A(T)$ with α_1 being the smallest angle.
- $A(T)$ is larger than $A(T')$ iff there exists an i such that $\alpha_j = \alpha'_j$ for all $j < i$ and $\alpha_i > \alpha'_i$.
- Best triangulation is triangulation that is *angle optimal*, i.e. has the largest angle vector. Maximizes minimum angle.
Angle Optimal Triangulations

Consider two adjacent triangles of T:

- If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an *edge flip* on their shared edge.
Illegal Edges

- Edge e is illegal if:
 \[\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i. \]

- Only difference between T containing e and T' with e flipped are the six angles of the quadrilateral.
Illegal Triangulations

- If triangulation T contains an illegal edge e, we can make $A(T)$ larger by flipping e.
- In this case, T is an illegal triangulation.
Thale’s Theorem

- We can use Thale’s Theorem to test if an edge is legal without calculating angles.

Let C be a circle, l a line intersecting C in points a and b and p, q, r, and s points lying on the same side of l. Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then:

$$\angle arb > \angle apb = \angle aqb > \angle asb.$$
Testing for Illegal Edges

- If p_i, p_j, p_k, p_l form a convex quadrilateral and do not lie on a common circle, exactly one of p_ip_j and p_kp_l is an illegal edge.

- The edge p_ip_j is illegal iff p_l lies inside C.
Computing Legal Triangulations

1. Compute a triangulation of input points P.
2. Flip illegal edges of this triangulation until all edges are legal.

- Algorithm terminates because there is a finite number of triangulations.
- Too slow to be interesting…
Sidetrack: Delaunay Graphs

• Before we can understand an interesting solution to the terrain problem, we need to understand Delaunay Graphs.

• Delaunay Graph of a set of points P is the dual graph of the Voronoi diagram of P
Delaunay Graphs

To obtain $DG(P)$:

- Calculate $Vor(P)$
- Place one vertex in each site of the $Vor(P)$
Constructing Delaunay Graphs

If two sites s_i and s_j share an edge (s_i and s_j are adjacent), create an arc between v_i and v_j, the vertices located in sites s_i and s_j.
Constructing Delaunay Graphs

Finally, straighten the arcs into line segments. The resultant graph is $DG(P)$.
Properties of Delaunay Graphs

No two edges cross; $\text{DG}(P)$ is a planar graph.

- Proved using Theorem 7.4(ii).
- Largest empty circle property
Delaunay Triangulations

- Some sets of more than 3 points of Delaunay graph may lie on the same circle.
- These points form empty convex polygons, which can be triangulated.
- *Delaunay Triangulation* is a triangulation obtained by adding 0 or more edges to the Delaunay Graph.
Properties of Delaunay Triangles

From the properties of Voronoi Diagrams…

- Three points $p_i, p_j, p_k \in P$ are vertices of the same face of the $\text{DG}(P)$ iff the circle through p_i, p_j, p_k contains no point of P on its interior.
Properties of Delaunay Triangles

From the properties of Voronoi Diagrams…

- Two points $p_i, p_j \in P$ form an edge of $\mathcal{DG}(P)$ iff there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point of P.
Properties of Delaunay Triangles

From the previous two properties...

- A triangulation T of P is a DT(P) iff the circumcircle of any triangle of T does not contain a point of P in its interior.
Legal Triangulations, revisited

A triangulation T of P is legal iff T is a $\text{DT}(P)$.

- $\text{DT} \rightarrow \text{Legal}$: Empty circle property and Thale’s Theorem implies that all DT are legal

- $\text{Legal} \rightarrow \text{DT}$: Proved on p. 190 from the definitions and via contradiction.
DT and Angle Optimal

The angle optimal triangulation is a DT. Why?
• If P is in general position, $\text{DT}(P)$ is unique and thus, is angle optimal.

What if multiple DT exist for P?
• Not all DT are angle optimal.
• By Thale’s Theorem, the minimum angle of each of the DT is the same.
• Thus, all the DT are equally “good” for the terrain problem. All DT maximize the minimum angle.
Terrain Problem, revisited

Therefore, the problem of finding a triangulation that maximizes the minimum angle is reduced to the problem of finding a Delaunay Triangulation.

So how do we find the Delaunay Triangulation?
How do we compute $\text{DT}(P)$?

- We could compute $\text{Vor}(P)$ then dualize into $\text{DT}(P)$.
- Instead, we will compute $\text{DT}(P)$ using a randomized incremental method.
Algorithm Overview

1. Initialize triangulation T with a “big enough” helper bounding triangle that contains all points P.
2. Randomly choose a point p_r from P.
3. Find the triangle Δ that p_r lies in.
4. Subdivide Δ into smaller triangles that have p_r as a vertex.
5. Flip edges until all edges are legal.
6. Repeat steps 2-5 until all points have been added to T.

Let’s skip steps 1, 2, and 3 for now…
Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p_r lives in, subdivide Δ into smaller triangles that have p_r as a vertex.

Two possible cases:
1) p_r lies in the interior of $\Delta
Triangle Subdivision: Case 2 of 2

2) p_r falls on an edge between two adjacent triangles
Which edges are illegal?

- Before we subdivided, all of our edges were legal.
- After we add our new edges, some of the edges of T may now be illegal, but which ones?
Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed.
- Outer edges of the incident triangles \(\{p_jp_k, p_ip_k, p_kp_j\} \) or \(\{p_ip_l, p_lp_j, p_jp_k, p_kp_i\} \) may have become illegal.
New Edges are Legal

Are the new edges (edges involving p_r) legal?

Consider any new edge $p_r p_l$.

Before adding $p_r p_l$,

- p_l was part of some triangle $p_i p_j p_l$
- Circumcircle C of p_i, p_j, and p_l did not contain any other points of P in its interior
New edges incident to p_r are Legal

- If we shrink C, we can find a circle C' that passes through p_rp_1
- C' contains no points in its interior.
- Therefore, p_rp_1 is legal.

Any new edge incident p_r is legal.
Flip Illegal Edges

• Now that we know which edges have become illegal, we flip them.

• However, after the edges have been flipped, the edges incident to the new triangles may now be illegal.

• So we need to recursively flip edges…
LegalizeEdge

$pr =$ point being inserted
$p_ip_j =$ edge that may need to be flipped

LEGALIZEEDGE(pr, p_ip_j, T)
1. **if** p_ip_j is illegal
2. **then** Let $p_ip_jp_1$ be the triangle adjacent to prp_ip_j along p_ip_j
3. Replace p_ip_j with prp_1
4. **LEGALIZEEDGE**(pr, p_ip_1, T)
5. **LEGALIZEEDGE**(pr, p_1p_j, T)
Flipped edges are incident to p_r

Notice that when LEGALIZEEDGE flips edges, these new edges are incident to p_r.

- By the same logic as earlier, we can shrink the circumcircle of $p_i p_j p_1$ to find a circle that passes through p_r and p_1.
- Thus, the new edges are legal.
Bounding Triangle

Remember, we skipped step 1 of our algorithm.

1. Begin with a “big enough” helper bounding triangle that contains all points.

Let \{p_{-3}, p_{-2}, p_{-1}\} be the vertices of our bounding triangle.

“Big enough” means that the triangle:

- contains all points of P in its interior.
- will not destroy edges between points in P.
Considerations for Bounding Triangle

• We could choose large values for p_{-1}, p_{-2} and p_{-3}, but that would require potentially huge coordinates.

• Instead, we’ll modify our test for illegal edges, to act as if we chose large values for bounding triangle.
Bounding Triangle

We’ll *pretend* the vertices of the bounding triangle are at:

\[p_{-1} = (3M, 0) \]
\[p_{-2} = (0, 3M) \]
\[p_{-3} = (-3M, -3M) \]

\[M = \text{maximum absolute value of any coordinate of a point in P} \]
Modified Illegal Edge Test

p_ip_j is the edge being tested

p_k and p_l are the other two vertices of the triangles incident to p_ip_j

Our illegal edge test falls into one of 4 cases.
Illegal Edge Test, Case 1

Case 1) Indices i and j are both negative

- \(p_i p_j \) is an edge of the bounding triangle
- \(p_i p_j \) is legal, want to preserve edges of bounding triangle
Illegal Edge Test, Case 2

Case 2) Indices i, j, k, and l are all positive.

- This is the normal case.
- p_ip_j is illegal iff p_l lies inside the circumcircle of $p_ip_jp_k$
Illegal Edge Test, Case 3

Case 3) Exactly one of i, j, k, l is negative

- We don’t want our bounding triangle to destroy any Delaunay edges.
- If i or j is negative, \(p_i p_j \) is illegal.
- Otherwise, \(p_i p_j \) is legal.
Illegal Edge Test, Case 4

Case 4) Exactly two of i, j, k, l are negative.

- k and l cannot both be negative (either p_k or p_l must be p_r)
- i and j cannot both be negative
- One of i or j and one of k or l must be negative
- If negative index of i and j is smaller than negative index of k and l, p_ip_j is legal.
- Otherwise p_ip_j is illegal.
Triangle Location Step

Remember, we skipped step 3 of our algorithm.

3. Find the triangle T that p_r lies in.

- Take an approach similar to Point Location approach.
- Maintain a point location structure D, a directed acyclic graph.
Structure of D

- Leaves of D correspond to the triangles of the current triangulation.
- Maintain cross pointers between leaves of D and the triangulation.
- Begin with a single leaf, the bounding triangle $p_{-1}p_{-2}p_{-3}$
Subdivision and D

- Whenever we split a triangle Δ_1 into smaller triangles Δ_a and Δ_b (and possibly Δ_c), add the smaller triangles to D as leaves of Δ_1
Subdivision and \mathbf{D}

$\Delta_1 \quad \Delta_2 \quad \Delta_3$

\downarrow split Δ_1

$\Delta_A \quad \Delta_B \quad \Delta_C$

$\Delta_1 \quad \Delta_2 \quad \Delta_3$
Edge Flips and \(D \)

- Whenever we perform an edge flip, create leaves for the two new triangles.
- Attach the new triangles as leaves of the two triangles replaced during the edge flip.
Edge Flips and Δ
Searching D

$p_r = \text{point we are searching with}$

1. Let the current node be the root node of D.
2. Look at child nodes of current node. Check which triangle p_r lies in.
3. Let current node = child node that contains p_r
4. Repeat steps 2 and 3 until we reach a leaf node.
Searching \mathbb{D}

- Each node has at most 3 children.
- Each node in path represents a triangle in \mathbb{D} that contains p_r
- Therefore, takes $O(\text{number of triangles in } \mathbb{D} \text{ that contain } p_r)$
Properties of D

Notice that the:

- Leaves of D correspond to the triangles of the current triangulation.
- Internal nodes correspond to *destroyed triangles*, triangles that were in an earlier stage of the triangulation but are not present in the current triangulation.
Algorithm Overview

1. Initialize triangulation T with helper bounding triangle. Initialize D.

2. Randomly choose a point p_r from P.

3. Find the triangle \triangle that p_r lies in using D.

4. Subdivide \triangle into smaller triangles that have p_r as a vertex. Update D accordingly.

5. Call LEGALIZEEDGE on all possibly illegal edges, using the modified test for illegal edges. Update D accordingly.

6. Repeat steps 2-5 until all points have been added to T.
Analysis Goals

- Expected running time of algorithm is: \(O(n \log n)\)
- Expected storage required is: \(O(n)\)
First, some notation...

- $P_r = \{p_1, p_2, \ldots, p_r\}$
 - Points added by iteration r
- $\Omega = \{p_{-3}, p_{-2}, p_{-1}\}$
 - Vertices of bounding triangle
- $DG_r = DG(\Omega \cup P_r)$
 - Delaunay graph as of iteration r
Sidetrack: Expected Number of Δs

It will be useful later to know the expected number of triangles created by our algorithm…

Lemma 9.11 Expected number of triangles created by $\text{DELAUNAYTRIANGULATION}$ is $9n+1$.

- In initialization, we create 1 triangle (bounding triangle).
Expected Number of Triangles

In iteration r where we add p_r,

- in the subdivision step, we create at most 4 new triangles. Each new triangle creates one new edge incident to p_r
- each edge flipped in LEGALIZEEDGE creates two new triangles and one new edge incident to p_r
Expected Number of Triangles

Let \(k \) = number of edges incident to \(p_r \) after insertion of \(p_r \), the degree of \(p_r \)

- We have created at most \(2(k-3)+3 \) triangles.
- -3 and +3 are to account for the triangles created in the subdivision step

The problem is now to find the expected degree of \(p_r \)
Expected Degree of p_r

Use backward analysis:

- Fix P_r, let p_r be a random element of P_r
- $D G_r$ has $3(r+3)-6$ edges
- Total degree of $P_r \leq 2[3(r+3)-9] = 6r$

$E[\text{degree of random element of } P_r] \leq 6$
Triangles created at step r

Using the expected degree of p_r, we can find the expected number of triangles created in step r.

$$\text{deg}(p_r, DG_r) = \text{degree of } p_r \text{ in } DG_r$$

\[
E[\text{number of triangles created in step } r] \leq E[2\text{deg}(p_r, DG_r) - 3]
\]
\[
= 2E[\text{deg}(p_r, DG_r)] - 3
\]
\[
\leq 2 \cdot 6 - 3 = 9
\]
Expected Number of Triangles

Now we can bound the number of triangles:
\[\leq 1 \text{ initial } \Delta + \Delta s \text{ created at step 1 } + \Delta s \text{ created at step 2 } + \ldots + \Delta s \text{ created at step } n \]
\[\leq 1 + 9n \]

Expected number of triangles created is 9n+1.
Storage Requirement

- D has one node per triangle created
- 9n+1 triangles created
- O(n) expected storage
Expected Running Time

Let’s examine each step…

1. Begin with a “big enough” helper bounding triangle that contains all points.
 O(1) time, executed once = O(1)

2. Randomly choose a point p_r from P.
 O(1) time, executed n times = O(n)

3. Find the triangle Δ that p_r lies in.

 Skip step 3 for now...
Expected Running Time

4. *Subdivide Δ into smaller triangles that have pr as a vertex.*

 O(1) time executed n times = O(n)

5. *Flip edges until all edges are legal.*

 In total, expected to execute a total number of times proportional to number of triangles created = O(n)

Thus, total running time without point location step is O(n).
Point Location Step

- Time to locate point p_r is
 $O(\text{number of nodes of } \mathcal{D} \text{ we visit})$
 $+ O(1)$ for current triangle
- Number of nodes of \mathcal{D} we visit
 $= \text{number of destroyed triangles that contain } p_r$
- A triangle is destroyed by p_r if its circumcircle contains p_r

We can charge each triangle visit to a Delaunay triangle whose circumcircle contains p_r
Point Location Step

\[K(\Delta) = \text{subset of points in } P \text{ that lie in the circumcircle of } \Delta \]

- When \(p_r \in K(\Delta) \), charge to \(\Delta \).
- Since we are iterating through \(P \), each point in \(K(\Delta) \) can be charged at most once.

Total time for point location:

\[
O(n + \sum_{\Delta} \text{card}(K(\Delta))),
\]
Point Location Step

We want to have $O(n \log n)$ time, therefore we want to show that:

$$\sum_{\Delta} \text{card}(K(\Delta)) = O(n \log n),$$
Point Location Step

Introduce some notation…

\[T_r = \text{set of triangles of } \mathbb{DG}(\Omega \cup P_r) \]
\[T_r \setminus T_{r-1} \] triangles created in stage \(r \)

Rewrite our sum as:

\[
\sum_{r=1}^{n} \left(\sum_{\Delta \in T_r \setminus T_{r-1}} \text{card}(K(\Delta)) \right).
\]
Point Location Step

More notation…

\[k(P_r, q) = \text{number of triangles } \Delta \in T_r \text{ such that } q \text{ is contained in } \Delta \]

\[k(P_r, q, p_r) = \text{number of triangles } \Delta \in T_r \text{ such that } q \text{ is contained in } \Delta \text{ and } p_r \text{ is incident to } \Delta \]

Rewrite our sum as:

\[\sum \limits_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \text{card}(K(\Delta)) = \sum \limits_{q \in P \setminus P_r} k(P_r, q, p_r). \]
Point Location Step

Find the $E[k(P_r, q, p_r)]$ then sum later...

- Fix P_r, so $k(P_r, q, p_r)$ depends only on p_r.
- Probability that p_r is incident to a triangle is $3/r$

Thus:

$$E[k(P_r, q, p_r)] \leq \frac{3k(P_r, q)}{r}.$$
Point Location Step

Using:

\[E[k(P_r, q, p_r)] \leq \frac{3k(P_r, q)}{r}. \]

We can rewrite our sum as:

\[E\left[\sum_{\Delta \in T_r \setminus T_{r-1}} \text{card}(K(\Delta)) \right] \leq \frac{3}{r} \sum_{q \in P \setminus P_r} k(P_r, q). \]
Point Location Step

Now find $E[k(P_r, p_{r+1})] \ldots$

- Any of the remaining $n-r$ points is equally likely to appear as p_{r+1}

So:

$$E[k(P_r, p_{r+1})] = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q).$$
Point Location Step

Using:

\[E[k(P_r, p_{r+1})] = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q). \]

We can rewrite our sum as:

\[E\left[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \text{card}(K(\Delta)) \right] \leq 3 \left(\frac{n-r}{r} \right) E[k(P_r, p_{r+1})]. \]
Point Location Step

Find $k(P_r, p_{r+1})$

- number of triangles of \mathcal{T}_r that contain p_{r+1}
- these are the triangles that will be destroyed when p_{r+1} is inserted; $\mathcal{T}_r \setminus \mathcal{T}_{r+1}$
- Rewrite our sum as:

$$E\left[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \text{card}(K(\Delta)) \right] \leq 3 \left(\frac{n-r}{r} \right) E\left[\text{card}(\mathcal{T}_r \setminus \mathcal{T}_{r+1}) \right].$$
Point Location Step

Remember, number of triangles in triangulation of n points with k points on convex hull is 2n-2-k

- T_m has $2(m+3)-2-3=2m+1$
- T_{m+1} has two more triangles than T_m

Thus, $\text{card}(T_r \setminus T_{r+1})$

= card(triangles destroyed by p_r)

= card(triangles created by p_r) – 2

= card($T_{r+1} \setminus T_r$) - 2

We can rewrite our sum as:

$$E\left[\sum_{\Delta \in T_r \setminus T_{r-1}} \text{card}(K(\Delta)) \right] \leq 3\left(\frac{n-r}{r} \right) \left(E[\text{card}(T_{r+1} \setminus T_r)] - 2 \right).$$
Point Location Step

Remember we fixed P_r earlier…

- Consider all P_r by averaging over both sides of the inequality, but the inequality comes out identical.

\[
E[\text{number of triangles created by } p_r] = E[\text{number of edges incident to } p_{r+1} \text{ in } T_{r+1}] = 6
\]

Therefore:

\[
E[\sum_{\Delta \in T_r \setminus T_{r-1}} \text{card}(K(\Delta))] \leq 12\left(\frac{n-r}{r}\right).
\]
Analysis Complete

\[E \left[\sum_{\Delta \in T_r \setminus T_{r-1}} \text{card}(K(\Delta)) \right] \leq 12 \left(\frac{n-r}{r} \right). \]

If we sum this over all \(r \), we have shown that:

\[\sum_{\Delta} \text{card}(K(\Delta)) = O(n \log n), \]

And thus, the algorithm runs in \(O(n \log n) \) time.