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Outline

Goal: Develop a representation that fully captures all topological
properties of subdivisions (2D, 3D)

Doubly Connected Edge List
Winged Edge
Quad Edge
Application: Voronoi diagrams and Delaunay triangulations

Facet Edge



Application-specific data

e Geometric Information

Vertex coordinates (edge lengths, face normals, ...)

e Attribute Information

Color, Temperature/Pressure, Population, other statistics

e Applications

Partitioning: nearest neighbor (Voronoi Diagram/ Delaunay
Triangulation)



Doubly-Connected Edge List (Eastman, 1982)
Every edge is represented by two half-edge structures

Pointers: Vertex, Sym, and Next

Sym points to symmetric half-edge

e Same Edge

e Opposite Vertex

e Opposite Face

Next points to half-edge
Counter-Clockwise around Face on left
e Same Face

e CCW Vertex around Face on left




Vertex points to an incident edge
Face points to edge on its perimeter

Data
e Geometric Information in Vertices

e Topological Information in half-edges

Time Complexity
e Time is linear in the amount of information gathered

e Independent of global complexity



Winged Edge Data Structure

Planar graph (subdivision of a sphere)




Components of a set of Polyhedra
e Bodies, Faces, Edges, Vertices

e Fach body contains ring of faces, ring of edges, ring of vertices

Each vertex points to one of its adjacent edges

Each face points to one of the edges on its perimeter (boundary)



Each edge points to
e two neighboring faces and defining vertices

e four immediate neighboring edges about its face perimeter (“wings” of
the edge)

Edge Vertices Faces Left Traverse Right Traverse
Name Start End Left Right Pred Succ Pred Succ
a Y X 1 2 b C d e



Topology stored in edge nodes,
geometry stored in vertex nodes

Operations
Enumerate vertices, edges, faces

Sequential Access

Edge Vertices Faces Left Traverse Right Traverse
Name Start End Left Right Pred Succ Pred Succ

a A D 3 1 C f b C

b A B 1 4 C a f d

C B D 1 2 a b d e

d B C 2 4 e b f

e C D 2 3 f a

f A C 4 3 d a e



Euler Operators
Modity polyhedron by adding or deleting vertices, edges and faces.

Euler formula

V-E+F=2
V vertices E edges F' faces

Operators edit polyhedron so that Euler formula is always satisfied

Operators:

Make (Mxy) group

Kill (Kxy) group

X, y edare elements of the model (e.g., a vertex, edge, face)



e (Mantyla, 1984) Every topologically valid polyhedron can be constructed

from an initial polyhedron by a finite sequence of Euler operators

Operator Name
MEV
MFE
KEV
KFE

Meaning
Make edge and vertex
Make face and edge
Kill edge and vertex
Kill face and edge

v
+1

-1

E F
+1
+1  +1
-1
-1 -1



Operator Name

MEV

MEV

MEV

MEV

Meaning

Make a face and a vertex

Make an edge and a vertex

Make an edge and a vertex

Make an edge and a vertex

+1

+1

+1

+1

+1

+1

+1

F

+1

Result




Operator Name Meaning vV E F Result

MFE Make a face and an edge +1 +1

MFE Make a face and an edge +1 +1

MFE Make a face and an edge +1 +1



Examples of subdivisions




QuadEdge Data Structure (Guibas and Stolfi, 1985)

Orientation: two ways of defining local clockwise rotation
e Oriented element of subdivision is an element x together with an
orientation of a disk containing x
Direction:

e Directed edge is an edge together with a direction along it

Four ways to choose orientation and direction

e Bug Demo



Given an oriented and directed edge, define
e ¢ Org, e Dest vertex of origin, vertex of destination

o ¢ Left, e Right lett face, right face

e Elements e Org, e Left, e Right, e Dest given orientation that agrees
locally with orientation of e




Each vertex has ring of edges (perimeter)

e ¢ Onext next counterclockwise edge with same origin







Each face has ring of edges

e ¢ Lnext next counterclockwise edge with same left face

..——7/




Edge Functions:

Rot: Bug rotates 90
degrees

Sym: Bug rotates
back to front

Flip: Bug flips

up-side down




Dual subdivisions

1. (e Dual) Dual = ¢

2. (e Sym) Dual = (e Dual) Sym

3. (e Flip) Dual = (e Dual) Flip Sym
4. (e Lnext) Dual = (e Dual) Onext™!




Relations Between Edges: Edge Algebra
Some Properties of Flip, Rot, and Onext:

e Rot* = e
e Rot> # e
e Flip?> =e

e Flip Rot Flip Rot = e

e Rot Flip Rot Flip=-e¢

e Rot Onext Rot Onext = ¢
e Flip Onext Flip Onext = ¢




Properties of Edge Algebra deduced from those above:

e Flip~! =e Flip

e Sym = e Rot?

e Rot™! = e Rot®

e Rot—! = e Flip Rot Flip

e Onext™! = e Rot Onext Rot
e Onext=! = e Flip Onext Flip




NOTE: Every function defined so far can be expressed as a constant
number of Rot, Flip, and Onext operations, independently of the local
topology and the global size and complexity of the subdivision.
Represent Subdivision and its Dual Simultaneously

e Vertices — Faces

e Edges — Edges



Application: Voronoi Diagrams and Delaunay Triangulations
The InCircle Test

Define InCircle(A, B,C, D) to be true if D lies to the left of the oriented circle
ABC, false otherwise.




The test InCircle(A, B,C, D) is equivalent to the test
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CCW (A, B,C) = True if points A, B, C form counterclockwise oriented triangle
RightOf|X,e] = CCW|X,e.Dest,e.Org|

LeftOflx,e] = CCW|[X,e.Org,e.Dest]



1. Let L and R be two sets of points. Any edge of the Delaunay triangulation

of L U R whose endpoints are both in L is in the Delaunay triangulation of
L.

2. An edge XY is Delaunay if InCircle(A, X,Y, B) is false for every pair of
sites A and B to the left and right, respectively, of line XY.

Y

X

A triangulation T is Delaunay if and only if all its edges pass the circle test.



Divide-and-Conquer Algorithm
e Partition the points into two halves by z-coordinate, Left and Right

e Find Delaunay triangulation of each half
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e Marry two half triangulations

Create a first cross edge basel

Lemma. Any two cross edges adjacent in the y-ordering share a common vertex.
The third side of the triangle they define is either an L — L or a R — R edge.



Locate the first L point to be encountered by rising bubble
Delete L edges out of basel.Dest that fail the circle test

Locate first R point to be encountered and delete R edges out of basel.Org
that fail the circle test

Next cross edge is to be connected to either lcand.Dest or rcand.Dest

If both are valid, then choose the appropriate one using the InCircle test



e Uses geometric primitives InCircle and CCW(A,B,C)
e Overall cost of merge pass is linear in size of L and R

¢ Running time for entire algorithm O(nlogn)



Facet-Edge (Dobkin, Laszlo, 1987)
Models polyhedral complexes in R?, surfaces of 4-polyhedra
Each facet f has an edge-ring &5 = (%, el,...e" 1)
Each edge e has a facet-ring F, = (f°, f1,... fm 1)

Facet-edge pair a = (f,,e,): facet f, and edge e, adjacent to f,

el aDest




Traversal Functions
Each function is applied to facet-edge pair
Fnezxt: next face in facet-ring
Enext: next edge in edge-edge ring

Rev: eqr = eq, for = fa, directions of &,/, &, are the same, direction of F,;
is opposite that of F,

Clock: ey = €4, for = fa, directions of &,/, F, are opposite those of &,, F,



Traversal function relations

1.

U W

aRev? = a

. aClock? = a
. aRevClock = aClockRev

aFnext™' = aClockFnextClock

. aEnext—! = aClockEnextClock




Space-Duality

Space Dual

e Cells — Vertices
e Facets — Edges
e FEdges — Facets
e Vertices — Cells

Sdual applies to a facet-edge pair a and returns a second facet-edge pair

aSdual belonging to space dual




Relations

o aSdual® = a

o aClockSdual = aSdualClock
o afnext = aSdualEnextSdual
o alnert = aSdualFnextSdual




Operators

Splice_facets
e Input: two facet edge pairs (a,b)

e Operation modifies facet-rings F,, Fp

1. if rings are distinct, combines them into one ring

2. if rings are identical, breaks the ring into two distinct rings




Splice_edges
e Input: two facet edge pairs (a, b)

e Operation modifies edge-rings &,, &
1. if rings are distinct, combines them into one ring

2. if rings are identical, breaks the ring into two distinct rings
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Applications

Decomposing a polyhedron
e partitioning polyhedron into simplier constituents

e non-convex, handles

Incremental Construction of 3-Dimensional Delaunay triangulation
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