
Massachusetts Institute of Technology Handout 5
6.838: Geometric Computation October 4, 2001
Professors Piotr Indyk and Seth Teller

Solutions to problem set 1

(mostly taken from the solution set of Jan Vondrák)

Mandatory Part

Problem 1. Application of convex hulls: diameter

Let P be a set of points on the plane. The diameter of P is defined as maxp,q∈P ‖p − q‖2,
where ‖ · ‖ is the Euclidean norm. Let CH be the convex hull of P .

• A point p on the convex hull is called unnecessary, if it lies on the segment between its
predecessor and its successor on CH. Show that removing unnecessary points from P
does not change the diameter of P . Also, give an O(n) time algorithm which detects
and removes from P all unnecessary points.

• For each CH segment s = p − p′, define anti(s) to be the set of points furthest from
the line containing s. Show that if CH does not contain any unnecessary points, then
the cardinality of anti(s) is at most 2.

• Show that the diameter pair is a subset of {p, p′}∪anti(p−p′) for some segment p−p′.

• Based on the above observations, give an O(n logn)-time algoritm for finding the di-
ameter of P .

Solution.

• More generally, if P is a polytope and

diam(P) = ‖p − q‖, p, q ∈ P

then both p and q are vertices of P :

Suppose p is not a vertex. Then there exists a vector z 6= 0 such that p ± z ∈ P . We
can assume that the dot product (p− q, z) is nonnegative (otherwise consider −z). By
expanding the square of a norm as a dot product, we get

‖(p + z) − q‖2 = (p − q, p − q) + 2(p − q, z) + (z, z) ≥ ‖p − q‖2 + ‖z‖2 > ‖p − q‖2

which contradicts the fact that p and q maximize the distance between two points in
P .

For a given set of points which are on the boundary of the convex hull in cyclic order,
we can remove the unnecessary points by simply going around the polygon and marking
all points which lie on the line defined by their two neighbors.

2 Handout 5: Solutions to problem set 1

• First, if s is a segment of the convex hull, then CH is contained in one of the cor-
responding halfplanes. (Otherwise points in the relative interior of s would be in the
interior of the polygon.) Let l be the furthest line parallel to s which still intersects
CH. Because CH is convex, the intersection l ∩ CH is either one point or a line
segment. In case it is one point, |anti(s)| = 1. In case it is a line segment, assuming
we have removed the unnecessary points, only the endpoints of |l ∩ CH| are in P and
|anti(s)| = 2.

• Let diam(P) = ‖p − q‖. Let lp, lq be two parallel lines going through p and q, respec-
tively, perpendicular to p − q. Then CH is contained in the stripe between lp and lq,
otherwise there is a point in CH further away from p than q, or vice versa. Moreover,
lp ∩ CH = {p} and lq ∩ CH = {q}.

Now, start rotating the two lines simultaneously, until one of them hits another point
in P . Denote the rotated lines by l′p, l

′

q and assume l′p contains another point p′ ∈ P .
Then l′p contains a line segment p−p′ and l′q is still the furthest parallel line intersecting
CH (otherwise we would stop rotating sooner because of l′q). So we have s = p − p′

and q ∈ anti(s) ⊂ l′q.

• The algorithm can proceed as follows: First, find the convex hull of P in O(n log n)
time. Then remove the unnecessary points in O(n) time. Finally, process the line
segments of the convex hull in the clockwise order and for each of them, determine the
set anti(s). While finding anti(s) for the first segment may take O(n) time, finding
the next one takes only O(1 + k) where k is the number points separating anti(s) and
anti(s′) in the clockwise order. We simply go around the boundary of CH as long as
the distance from s′ increases. Due to the previous observations, there can be at most
two points which maximize the distance from each line segment, and the diameter of
CH can be found as the maximum of all these distances. Going around the whole
polygon, we spend O(n) time to determine the diameter. The total running time is
dominated by the convex hull algorithm which takes O(n log n).

Problem 2. Vertical segment intersection.

In the class (Lecture 2) we have seen an algorithm for reporting all segment intersections when
all segments are either horizontal or vertical. The description given in the class focused on
detecting intersections between horizontal and vertical segments, leaving open the problem
of detecting the intersections between vertical and vertical (or horizontal and horizontal)
segments. To fill this gap, construct an efficient algorithm, which given a set of vertical
(only) segments, reports all pairs of segments having nonempty intersection.

Solution.

Initially, we sort the vertical segments by their horizontal position in O(n log n) time.
Then we can separate them easily into buckets corresponding to different horizontal positions.
Intersections can only occur within each bucket. In each bucket, we apply the 1D algorithm
to detect intersections between intervals on the line. For a bucket of size ni, this takes time
O(ni log ni +ki) ≤ O(ni log n+ki) where ki is the number of intersecting pairs in the bucket.
The total running time is O(n log n + k) where k is the total number of intersections.

Handout 5: Solutions to problem set 1 3

Problem 3. Textbook, exercise 3.3, p. 60.

A rectilinear polygon is a simple polygon of which all edges are either horizontal or vertical.
Give an example to show that bn/4c cameras are sometimes necessary to guard a rectilinear
polygon with n vertices.

Solution.

The rectilinear polygon would contain n

4
parallel ”alleys”. At least n

4
cameras are needed

because no camera can see more than one alley.

Problem 4. Textbook, excercise 4.16, p. 94.

On n parallel tracks n trains are going with constant speeds v1 . . . vn. At time t = 0 the
trains are at positions k1 . . . kn. Give an O(n log n) time algorithm that detects all trains that
at some moment are leading. To this end, use the algorithm for computing the intersection
of half-spaces.

Solution.

The space-time diagram of each train is given by

xi(t) = ki + vit.

If we define a polyhedral set

H = {(t, x) : ∀i; x ≥ xi(t)}

a point (t∗, x∗) on the bottom boundary of H has the property that no train is beyond x∗ at
time t∗. A train such that xi(t

∗) = x∗, i.e. a train which defines the boundary at that point,
is leading at time t∗. It remains to determine which trains define the boundary of H. This
can be done using the half-space intersection algorithm from the book.

Optional Part

Problem A. Textbook, excercise 2.12, p. 43.

Let S be a set of n triangles in the plane. The boundaries of the triangles are disjoint, but
it is possible that a triangle lies entirely inside another triangle. Let P be a set of n points
in the plane. Give an O(n logn)-time algorithm that reports each point in P lying outside
all triangles.

If you want, you can assume that all x-coordinates of points in P as well as of vertices
of triangles in T are different.

4 Handout 5: Solutions to problem set 1

Solution.

We use the plane sweep method. First, let’s sort all the points and triangle vertices by
their horizontal position. We associate events with each object:

• Test Point - for a single point

• Insert Triangle - for the leftmost vertex of a triangle

• Modify Edge - for the middle vertex

• Remove Triangle - for the rightmost vertex

Between two neighboring events, the interior of a triangle is defined by two linear functions
- the top and bottom edge. Therefore we can test the position of a point relative to the
triangles in constant time.

During the plane sweep, we keep the ”active” objects sorted by their vertical coordinate
in a data structure allowing the Search, Insert and Delete operations in O(logn) time (for
example, a dynamically balanced search tree). Since triangles don’t intersect, the vertical
ordering is well defined. If a triangle vertex is found to be inside another triangle, the inside
triangle can be discarded.

We handle the events in this way:

• Test Point - we search for its position among active triangles. If the point turns out to
be outside any active triangle, we report it.

• Insert Triangle - insert a new a triangle in the data structure and mark the two leftmost
edges as active (to be used in comparisons with points and other vertices).

• Modify Edge - Instead of the edge between the leftmost vertex and the middle vertex,
activate the edge between the middle and rightmost vertex.

• Remove Triangle - Remove the triangle from the data structure.

We spend O(log n) time on each event and the total running time is O(n log n).

Problem B.

The algorithm works if the horizontal edges are handled consistently. The usual way to
avoid degeneracies is to rotate the polygon by a small angle, so that no two vertices have
the same y-coordinate. Equivalently, we can set up rules to handle horizontal edges so that
the behavior of the algorithm will be exactly the same as if we rotated the polygon slightly,
for example clockwise. Specifically, these rules would be:

• When sorting vertices before the plane sweep, use lexicographic ordering - the y-
coordinate and then the x-coordinate. Thus all horizontal segments will be processed
from left to right.

• When deciding whether a vertex is a split vertex or a merge vertex, consider a horizontal
edge on the left as going slight upward and a horizontal edge on the right as downward.
Therefore vertices inside a horizontal row will be neither split nor merge vertices.

Handout 5: Solutions to problem set 1 5

• When looking for the ”helper” vertex, assume that all the vertices on a horizontal
sequence of segments are ”visible” from the left, but only the rightmost vertex is
”visible” from the right.

The rest of the algorithm should remain intact. The same rules should be applied to the
monotone triangulation algorithm as well.

Comment: the solution above is correct. However, almost no one pointed out

that the triangles produced by this algorithm would have zero area, and would

have to be removed by a post-processing step. Some people lost points if their

solution simply referred to the text, with no elaboration.

Problem C.

Let the feasible region be
F = {x ∈ Rd : Ax ≤ b}.

We define a new linear program in dimension d + 1:

max{λ : λ ≤ 1, ∃x ∈ Rd; Ax + jλ ≤ b}

(where j denotes the (1, 1, . . . , 1) vector).
Assuming that F is nonempty and full-dimensional, there exists a point which is ”well-

inside”, i.e. ∃λ > 0, x ∈ F such that Ax + λj ≤ b. Since we have the additional contraint
λ ≤ 1, the objective function is bounded and an optimum exists. Also, the optimum is
strictly greater than zero. When we find any optimum solution (x, λ), we have λ > 0 and
Ax ≤ b − jλ < b which means that x is well inside F .

Comment: several solutions suggested pushing the initial constraints inward by

some small epsilon. This lost points unless an efficient method for determining

epsilon was given.

Programming Exercise

Excellent solutions can be seen at
http://web.mit.edu/drdaniel/www/6.838/ConvexHull/ConvexHull.html (IE only)
and
http://graphics.lcs.mit.edu/~jcyang/6.838/pset1/

These are due to Daniel Vlasic and Jason Yang, respectively.
The 50 points for this section were apportioned as 10 for the basic GUI, 10 for polygon

entry, 10 for Convex Hull of a simple polygon, 15 for Andrews’s algorithm, and 5 for the
explanatory web page.

