
Massachusetts Institute of Technology Handout 8
6.838: Geometric Computation November 20, 2001
Professors Piotr Indyk and Seth Teller

Problem set 3

Due 1pm, Tuesday December 11th, 2001.

Required Part

Problem 1 [20 points]. Exercise 11.6, p. 250. Describe an efficient data structure that
allows you to test whether a query point q lies inside a convex polytope in <3. Hint: use
point location structures.

Problem 2 [10 points]. Prove (in detail) that the Minkowski sum of two convex polygons
is convex.

Problem 3 [20 points]. Exercise 14.5, p. 304. It is possible to reduce the size of a quadtree
of depth d for a set of points inside a square, from O(dn) to O(n). The idea is to discard
any node v that has only one child under which points are stored. The node is discarded by
replacing the pointer from the parent of v, to point to the only interesting child of v, not v

itself. Prove that the resulting tree has linear size.
Can you also improve upon the O(nd) construction time ?

Optional Part

Problem A [30 points]. Given n points in <d, and a parameter r, give a (possibly
randomized) O(dO(1)n) time algorithm which does the following:

• if there is a pair of points within distance r from each other, output YES

• if there is no pair of points within distance d2r from each other, output NO.

• otherwise, the output can be arbitrary.

Note: The running time should be polynomial in d.

2 Handout 8: Problem set 3

Problem B [10 points]. Consider a set P of points in the discrete space {0 . . . U}2. A
hardcore quadtree for P is a quadtree constructed in such a way that a node is split as long
as it contains some points in P and some not in P . E.g., even if P contains only one point,
the hardcore quadtree procedure will continue splitting until it creates a node containing a
single point. Given two hardcore quadtrees T1 and T2 representing point sets P1 and P2,
show how to construct a hardcore quadtree T representing P1 ∪ P2. Your procedure should
run in time linear in the sizes of T1 and T2.

In addition, consider a naive quadtree. The latter continues splitting a node, even if all
points in the node belong to P . Show that the size of a naive quadtree for P is always at
least |P |. What is the largest cardinality of a set which can be represented by a hardcore
quadtree of constant size ?

Problem C [20 points]. Problem 15.2, page 317.

Handout 8: Problem set 3 3

Programming Exercise.

The programming exercise this time has these objectives:

1. Understand one frequently used line duality.

2. Construct and query an arrangement of lines.

3. Implement interaction subject to geometric constraints.

4. Provide continuous visual feedback.

For this assignment, you’ll need a complete implementation of the Convex Hull code from
PS1, and the DCEL/BSP code from PS2 – one that explicitly generates a DCEL face for
each cell of BSP tree. If your own code does not do this, feel free to adopt or use (with
acknowledgement) any of the “exemplary” solutions (from Matt Seegmiller, Daniel Vlasic,
or Jason Yang), or the demo from the Arrangements lecture (L9, by Darius Jazayeri), all of
which are posted to the course web page.

Briefly, you’ll implement primal and dual views of a plane space populated by various
interactively specified geometric primitives. You’ll construct and query some non-trivial
assemblies in both the primal and dual space. Below, you’ll find suggestions on how to pro-
ceed, but of course you may design and implement things however you wish. The imperative
statements below describe the capabilities of your applet that are required for credit.

Visualization Mode.

Implement two drawing regions, labeled Primal and Dual. Whatever interval you choose
to display in the Primal, choose the Dual interval appropriately, so that the “interesting
behavior” in the Dual will not occur outside the drawing region.

Enable the user to enter points, lines, and segments in the Primal region. For each, draw
the Dual (line, point, double wedge respectively). Restrict the line and segment specification
to bound the magnitude of the Primal slope so that the Dual point ends up inside the drawing
area.

Enable mouse-over highlighting, and selection editing, of both Primal or Dual objects,
with the appropriate update of the corresponding object in the other space. That is, contin-
uously highlight the object (and its Dual) that would be selected if the user mouse-pressed
there; if the mouse-press happens, select and edit the object.

Note that the editing step requires you to implement geometry constraints. For example,
when the user edits a segment you should allow a selected endpoint to be moved in 2D, or
in 1D – along the segment itself, changing only the segment length. You’ll probably need
to use two mouse buttons, or a Shift/Control/Alt keypress to discern the user’s intent here,
unless you can think of a better way.

You should also support selection of a segment at or near its midpoint, and allow rigid
translation of the segment with no rotation.

Similarly, when editing a wedge in the Dual space, either boundary line of the wedge
should be selectable, after which it can be rotated about the wedge fulcrum (careful: should

4 Handout 8: Problem set 3

the user be allowed to rotate either wedge boundary through the vertical?). You should
also support highlighting, selection, and translation of the wedge fulcrum itself, which will
translate the whole wedge.

Finally, enable the user to specify the boundary of a triangle, and of a disc of radius r, in
the Primal or Dual, and display its dual. (Note that both boundaries are one-dimensional
point families, so their duals are one-dimensional line families.)

Design your code carefully so you don’t end up writing several small variations of
your mouse-over, selection, and editing code.

Composition and Query Mode.

Now we’re ready to compose primitives.
First, support insertion of Primal points and segments. For each, use your BSP data

structure to insert the corresponding line or wedge in the Dual. (You’ll need to insert one
or two “segments” spanning the entire Dual region into the BSP tree.)

Now go back to Visualization mode (i.e., in which sweeping an object doesn’t insert it,
but just displays it), and enter a Primal line. Highlight the Dual cell in which the line’s Dual
point lies. The boundary of this cell is an ordered list of Dual lines. To what Primal points
do these correspond? Display them in both Primal and Dual.

Second, for an interactive query point in the Primal, highlight the Zone of the point’s
corresponding Dual line. To what set of lines in the Primal does this Zone correspond?
Display them in both Primal and Dual.

Third, support selection of a set of one or more Primal segments (for example, by repeated
selection holding the Shift key). What is the set of Primal lines that stabs all of the segments?
Display this set in both the Dual and Primal.

Fourth, come up with your own interesting connection between something in the Primal
and something in the Dual, and display it in both spaces. “Interesting” means that it
shouldn’t be subsumed by, or a trivial consequence of, one of the three relationships above.

Extra Credit:

Use the arrangement to compute form factors between all pairs of segments (i.e., the
fraction of lines leaving segment i that arrive at segment j, under an appropriate measure).
Select a few of the segments and mark them as light sources (set E > 0). Set the reflectivity
ρ > 0 for the rest of the segments. Use the form factors and the radiosity equation to
update the radiosity B on every segment (make sure to do this using “flatland” radiosity;
see e.g. Paul Heckbert’s papers on this topic). Render each segment with a color equal to its
radiosity. Iterate, subdividing segments as necessary, to produce a nice equilibrium lighting
distribution.

