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Abstract:

This paper presents a set of Ivray extensions to render scenes using a physically-based camera model.
By using actual lens prescriptions, the resulting renderer, Ivcam, is able to accurately reproduce lens
effects including focus, depth of field, barrel distortion, aperture, and exposure. Ivcam replaces the
pinhole camera used in Ivray with a film plane and lens system and simulates the propagation of
individual light rays through the various lens elements and aperture stops. 

The Ivcam UI contains extensions to support lens selection and focusing functionality. The Inventor
camera parameters are continually updated to present an approximate preview, although Inventor is
clearly unable to accurately reflect many of the effects. We show sample images rendered using a
variety of lens systems, including fish-eye, telephoto, double-gauss, and wide-angle. In addition, images
rendered with a wide-angle lens are compared to actual photographs of the scene using a similar lens. 

    
Introduction 
Ivray ray-traces scenes as if they were viewed through a pinhole lens onto a pinhole focal plane. The
result is that the focal length is fixed and the entire scene is clearly focused with no distortion. Real
cameras have variable focal lengths, apertures and focal planes with non-trivial area and finite
depth-of-field (DOF). 

Composing a photograph can be considered a balancing of these four effects. Wide-angle lenses cover a
larger viewing angle than normal or telephoto lenses from the same subject distance, but also increase
the perceived depth between foreground and background. Moving the camera position can compensate
for lens coverage, but with the result of a change in perspective. The effect can be used to expand or
flatten apparent depth in a photograph. 

Small apertures create larger DOF from the same subject distance with the same focal length, but also
decrease the light intensity on the film plane. Opening up the aperture can compensate for exposure, but
with the result of a change in DOF. The effect can be used to de-focus distracting backgrounds from an
important foreground subject. 

Lenses of various sort create their own unique image distortions. Lenses with large surfaces or many
elements suffer from chromatic abberation, barrel or pincushion distortions. Lenses with small surface
areas (or equivalently, small apertures) suffer from diffraction and loss of critical focus. In practice,
photographers have to trade-off perspective, focal length and exposure with lens- and aperture-induced



distortions. Our project incorporates the influence of such camera realities, allowing computer-
generated scenes to be viewed alongside film or video more convincingly. 

The remainder of this paper is organized as follows. Section 2 itemizes the specific goals of this project.
The following section describes the large subset of these goals that were achieved, and details many of
the technical issues difficulties encountered along the way. The contribution of each team member is
listed in Section 4, and the paper concludes by discussing some of the many lessons learned during the
course of the project. 

    
Goals 
Our goal was to extend Ivray to capture the various effects of lens imaging by developing a new
application, Ivcam, which wraps around the basic ray-tracing functionality of Ivray. Ivcam’s user
interface would allow the user to adjust various aspects of the camera model, including lens structure,
focus, and aperture. 

Specifically, we hoped to account for the following four effects: 

1. Perspective variations due to distance between the subject and lens. 

2. Depth-of-field (DOF) of sharp focus, which depends on factors such as image size and distance,
lens focal length, and aperture. 

3. Exposure variations due to the radius and geometry of lens elements and aperture, including
vignetting. 

4. Reduced image quality due to distortion (diffraction and abberation) introduced by the lens design
and aperture. 

   
Figure 1: Simulated Wide-Angle



   
Figure 2: Simulated Telephoto

Figures 1 and 2 demonstrate the type of effects we set out to capture. These images were not rendered,
but rather manually doctored to simulate the effects of photo-realistic rendering. Both images are
focused on the plane of the light bulb, and have equally-sized bases. 

Figure 1 simulates the results of using a wide-angle lens. The DOF covers the entire scene, perspective
is very strong, and there is significant barrel distortion (note the curvature in the armature). For
comparison, Figure 2 shows the same image through a telephoto lens. Here, DOF is very shallow (note
the out-of-focus armature and front shade edge), there is little sense of perspective, and distortion is
minimal. 

Our initial research produced two separate approaches, which we hoped to implement and compare, both
to each other and to actual photographs. The obvious approach involved interposing actual lens elements
in the scene between the eye and world-space objects. Assuming the ray-tracing engine properly
modeled the optical effects, this should produce images similar to those captured with a camera. The
second, more rigorous method involved modifying the camera model to include a lens system, and
accurately simulating the radiometry inside the camera itself. By accounting for the lens effects inside
the camera itself, we hoped not only to see a speed increase, but more accurate results as well. 

Lens Rendering 

The first approach is straightforward. One could use a standard rendering engine (which correctly
handles diffraction calculations for multiple adjacent or wholly-contained objects-note the current
implementation of Ivray does not do this), and then render through lenses in world space. This involves
modeling lens objects in Inventor. 

While we believe many aspects of a real lens system can be modeled in this fashion, the additional
computations required to traverse a lens system for each ray cast adds significant calculation to the
rendering process. Furthermore, without intelligent super-sampling methods, various subtle
characteristics of real lenses, such as variability in exposure and aperture may not be captured. 

Camera Model 



A second, more sophisticated approach involves including the camera model in the rendering engine
itself. This technique was used in previous work by Kolb, Mitchell, and Hanrahan [#!kolb!#]. Basically,
we would model the camera as a lens system and a backplane, and accurately calculates the irradiance
on the film from the incoming radiance of a rendered scene. This requires simulating the geometry of
rays passing through the lens system, and appropriately sampling the the system to reflect the
radiometry. 

Assumptions 

Note that while we believe our project produced quite dramatic results, there are several aspects of lens
photography that we did not, and never intended to capture. These included: 

Chromatic abberation: Physical lens systems often distort light rays in varying amounts dependent
on the wavelength. This is often characterized by the V-number of a lens, which describes the
change in the index of refraction with wavelength. 

While not terribly difficult to incorporate, it would have required us mapping RGB values to
wavelengths, which is problematic given the varying gamma values of different video card and
monitor combinations. Instead, we chose to refract all light based on the index of refraction at the
sodium d line (587.6 nm), which is the canonical index of refraction in optical texts. 

Parabolic Lenses: While many optical effects can be captured by spherical and planar lens
systems, some sophisticated imaging equipment utilizes parabolic and other non-spherical lens
elements. Our camera model is fully capable of handling such components, but the required
calculations would have considerably increased the level of complexity of the computations. On a
more pragmatic level, we did not have any references describing non-spherical lenses, and hence
would have been lacking for lens data. 

Film Characteristics: Image formation is greatly affected by the various attributes of the
photographic film in use. While an interesting area for exploration, we decided to assume a film
plate with infinite fidelity with regard to our display device. Similarly, we assume saturation varies
linearly with exposure time, and is independent of wavelength. Standard film is 36x24mm, so we
chose to render our default images as 360x240 (8 bit color, 10 pixels per mm). 

Projected Schedule 

The project milestones were defined by the following checkpoints; each checkpoint is labeled with
several tasks to be completed by the associated checkpoint. 

1. October 29: Project proposal with time-line and division of labor. 

2. November 5: Develop camera model and derive optical equations to accurately model a lens
system, including diffraction, focal length, and depth-of-field. Establish coding conventions, begin
Ivcam development by extending Ivray with skeleton GUI components. 

3. November 12: Add diffraction focal length, and depth-of-field functionality. The result should be
a fully-functional Ivcam tool. Develop a tool to generate accurate object models of a lens system.



Use the generated lenses to render images with the standard Ivray program. 

4. November 19: Find or build an accurate Inventor model of a real scene. Obtain photographs of
scene to compare with Ivcam and Ivray output. Add additional effects such as aperture and its
effects on exposure, vignetting to Ivcam. 

5. December 3: Render high-quality scenes for presentation and final report to demonstrate features
of ivcam. Extend the ivcam camera model to support temporal effects, such as multiple exposure
and motion blur. Final report submission and project presentation. 

Revisions 

After receiving feedback on our initial project proposal and beginning work on the project, it became
readily apparent that our first proposed approach, modeling lenses to be interposed between the eye and
the scene, was both inadvisable and unworkable. 

Inventor does not (to our knowledge) support rendering objects that consist of sphere sections. Using
any polygon-based approximation is clearly unworkable, as the calculation of surface normal is only
accurate to some arbitrary degree of precision, which may be insufficient for the resolution of the
desired image. Furthermore, any fairly precise approximation would consist of such a high number of
polygons that rendering time would be intractable. 

Hence it appeared impossible to model spherical lens elements in Inventor without extending the
modeling language. While certainly possible, given the benefits of the alternate approach in terms of
calculation efficiency and accuracy, it was decided to abandon the first approach. 

Additionally, given our film-plate assumptions with regard to linear saturation, any multiple exposure
and motion blur effects can be equally well simulated by post-processing multiple rendered images,
hence there is no additional benefit for incorporating the functionality into the camera model itself. 

    
Achievements 

  
Table: A wide-angle lens

prescription [#!smith!#, figure
18.5]

  



radius thick nd ap

163.579 5.529 1.540 107.8

53.169 45.435 1.000 81.8

59.487 23.301 1.772 56.2

-102.877 8.042 1.617 44.6

322.991 3.720 1.000 41.6

 10.353 1.000 39.8

-51.312 0.523 1.000 41.6

-758.075 14.073 1.713 48.4

-34.505 6.031 1.805 52.0

-76.210 18.094 1.000 55.8

-35.013 5.529 1.617 61.0

-54.424 64.930 1.000 81.8

Using the Ivray program (the solution to 6.837 Assignment 6) as our code base, we extended its
functionality and user interface to more closely match that of a real, interchangeable-lens camera
system. To evaluate the output of Ivcam, we reproduced a real-world scene (David Sirkin’s living room)
in great detail as an Inventor environment. Then the real scene and virtual model were photographed and
rendered, respectively, with their respective camera systems. The resulting photographs (Figures 7, 8,
and 9) and images (Figures 10, 11, and 12) allow qualitative comparisons of field-of-view, focus and
exposure can be qualitatively compared for several different lens/view combinations. 

The bulk of our development was done on Athena SGI workstations, using standard Institute resources.
The intensive computational requirements of the rendering process, however, led us to also port the
Ivcam code to Linux so additional computational resources at LCS could be employed. Our basic
contributions can be enumerated as follows: 

As part of Ivcam, created data structures to represent multiple-element lenses and developed
computational modules to: 

1. Calculate lens characteristics (focal length, exit pupil, etc) 
2. Adjust focus (zoom, positioning) 
3. Render images with accurate focal effects (exposure, super-sampling) 
4. Extend the existing UI (camera menu, focus plane, focus wheel and command-line options) 

Developed a visualization tool to plot lens diagrams from lens prescriptions 

Constructed a detailed and accurate Inventor model of Dave Sirkin’s living room 

Carefully photographed and rendered the scene and model from an identical position using
1



similar1 lens systems. 

    
Lens System 

We use optical lens prescriptions [#!smith!#] to describe the camera system through which we cast rays
into scenes. A prescription is a table describing the geometry of that lens’ component elements. Table 3
shows the prescription for the wide-angle lens depicted in figure 3. 

   
Figure 3: The wide-angle lens in table 3

Each row represents a lens surface and each column represents that surface’s radius, the axial distance to
the next surface, the index of refraction of that distance (with respect to air), and the aperture. Our code
reads through these prescriptions in both object-to-image and image-to-object directions, depending on
whether we are rendering a scene or setting the focal distance. An advantage of using prescriptions to
represent lenses is that we can then take advantage of the sequencing of the lens surfaces in our ray
tracing, rather than using standard object intersection techniques. 

Each prescription includes an aperture stop, which is a planar surface that limits the extent to which rays
entering one side of the lens will exit on the other. Note that using prescriptions of this form limits us to
using lenses comprised only of spherical or planar elements. Many modern lenses, and especially those
with wider fields-of-view, use aspherical elements to correct for particular exposure or focusing
problems. 

    
Simulation 

In a fashion similar to the way optical designers develop lenses, we cast rays of light through our lens
system in some direction and determine the direction those rays follow on their exit. To render a scene,
we approximate the following process: 

For all points, x, on the film plane,
                 For all points, y, in the hemisphere facing away
                 from the film plane, cast ray, 



                 from the film plane, cast ray, 

):

                                 For each lens element Li,

                                                 If R, Li intersection outside Li’s aperture

                                                                 R never exits lens, stop
                                                 Else
                                                                 Determine new R using Snell’s Law
                                 Cast R into the scene, computing E
                 Integrate E over y to compute exposure at x

The derivation of this process, as well as our simulation methods and various approximations are
discussed in the remainder of this section. 

Exit Pupil 

When looking through the lens system from any point on the film plane, only those rays passing
completely through each aperture stop in the lens system are visible; the rest are blocked, and assumed
to have zero intensity. The image of the aperture stop as viewed from the film plane is defined to be the
exit pupil. Clearly we need only cast rays at the exit pupil-any cast elsewhere will not impact the
exposure at the film plane. 

Calculating the actual exit pupil is non-trivial, however, as it requires imaging the stop through the
portion of the lens system between the stop and the film plane. Even using a thick-lens approximation,
this is still an expensive operation. As noted in [#!kolb!#], a thick lens approximation is only valid if the
lens system distortion is negligible, such that a circular disk is a reasonable approximation from an
off-axis point on the film plane, which is not necessarily the case for wide-angle lenses. 

Rather than empirically compute an exit pupil through some sort of approximation method (we
experimented with a Newtonian-flavor bisection approach), we note that we can safely assume the exit
pupil to be the rear-most lens element. Clearly it cannot be any larger, so we err on the conservative
side. The only concern, then, is we may cast rays through that portion of our exit pupil approximation
that don’t actually make it through the actual exit pupil. We examine this case in the following section. 

    
Exposure 

Combining our initial assumption that film saturation varies linearly with exposure time with an
assumption that irradiance is constant over the duration of the film exposure, the exposure at any
differential film element is simply the irradiance over that element times some constant factor. 

Assuming instantaneous shutter action, the total irradiance at a differential element can be computed by
integrating over the hemisphere of rays originating at that element. Note that only the solid angle
subtended by the exit pupil has a non-zero contribution, so we can avoid casting any rays outside of the
exit pupil. The partial integral of the exit-pupil rays must then be adjusted by the ratio of the area
subtended by the exit pupil to the entire hemisphere. Luckily, since we assume the same size exit pupil
at every point on the film plane, this is just a constant factor. We aggregate this constant factor into the
exposure duration, which, given our film assumptions, is completely arbitrary. 

With these simplifications, the exposure, E, at position x on the film plane is given by the integral below



[#!kolb!#], where L(x,x’) is the irradiation of a ray cast from position x to x’ on the exit pupil, D is the
exit pupil,  is the angle of between the ray and the film plane normal, and  is the corresponding
angle from between the ray and the exit pupil normal: 

  (1)

Since the exit pupil is parallel to the film plane, this can be rewritten as: 

  

  (2)

We now return to the case described above, when a cast rays fails to pass through the lens system due to
a miss-approximation of the exit pupil. In this case, we consider that ray to have a zero contribution to
the total exposure, but still count the ray in the super-sampling total. Given a suitably large number of
super-sampling rays, this gives a reasonable approximation of the varying size of the exit pupil over the
film plane. Additionally, it also captures vignetting, the blocking of light that occurs when rays are
blocked by lens elements other than the aperture stop in some lens systems when entering the system at
a wide angle. 

    
Sampling 

In order to calculate exposure at each differential film element, equation 2 integrates over the exit pupil.
Computing the exposure for an individual pixel requires yet another integration over the pixel area. This
double integral could be estimated by sampling over a four-dimensional hypercube. 

When the number of samples is small, however, sampling uniformly over the hypercube leads to a high
degree of noise; stratified sampling improves the accuracy for low numbers of samples. Additionally, we
sample separately over two separate two-dimensional domains using jittered sampling [#!shirley!#],
taking several samples of the exit pupil for each sample point on the pixel element. This reduces the
noise introduced by a particularly poor exit pupil sample. 

This works well for accurately sampling across the square pixel element. The exit pupil, however, is a
disk. As noted in [#!shirley!#], mapping a uniformly sampled two-dimensional point onto a disk is not
as straightforward as it first appears. To be strictly correct, the mapping from unit square to disk should
have a constant Jacobian, so that the points are equally dispersed about the disk. Due to the small
number of sampling rays cast in our images (typically 16 per pixel), however, the obvious mapping, 

  (3)



does not produce any objectionable effects for the images we’ve rendered. [#!kolb!#] suggests the
transformation developed by Shirley [#!shirley!#], mapping concentric squares to concentric circles,
provides even better results. Unfortunately, due to time constraints, we have not yet fully implemented
Shirley’s mapping. 

    
Focusing 

When focusing the camera on a fixed focal plane, there are two options: move the lens system, or move
the film plane. Physical cameras generally move the lens system, as the camera (and the contained film
plane) remain stationary during focusing. In our model, however, the front of the lens system is
positioned at the Inventor eye location, so moving the lens system would correspond to moving the
virtual camera. Instead, we chose to move the film plane. 

In optics, a simple lens is often described by its focal points and principal planes. A focal point is where
light rays entering one side of the lens intersect the axis on the other side. Where lenses are well-formed,
rays entering one side that emanate from a single point will converge on the opposite side to a single
point. We denote the focal point on the image-side of the lens as F, and on the object side as F’. 

While the rays actually refract and change direction on both entering and exiting the lens, an ideal thin
lens approximation is often used for optical calculations. In this case, the refraction is assumed to have
occurred at the plane defined by the intersection between the paths of the incoming and exiting rays. The
effective focal length of the lens is then considered the distance between this plane and the image-side
focal point F (the front focal length is the distance to the object-side focal point F’). 

However, a complex lens composed of many elements will have many focal points and principal planes.
We therefore use a use a thick-lens approximation for our exit pupil, exposure and focus calculations. In
this case, the focal points of the system as a whole are used and the refraction is assumed to have
occurred along two planes, one on the image-side denoted P and one on the object-side P’. Planes may
not coincide and in fact may be on either side of each other, but the distance between them is always the
thickness of the lens approximation. The focal lengths on image- and object-sides ( f  and f’) are then
equal but of opposite sign. 

   
Figure 4: Calculating principal planes

We find these points and planes by tracing axis-parallel rays through the lens system in both directions
and determining the appropriate intersections, as shown in Figure 4. Unfortunately, it wasn’t until about
half-way through the project time-line that we learned the process is not the same for all lenses. Since



principal points and planes may lie both within and without the lens system and may be in either order
(that is, the principal plane may be outside the focal point), the testing for intersection must be
generalized for either case. Figure 5 shows an example of this effect in a fish-eye lens. 

   
Figure 5: Finding focal length in fish-eye lenses

Given the focal length and principal planes of a lens system, we can now focus the system at a particular
point in the scene. We developed two methods for adjusting the film plane: one computes a distance to
move the lens system relative to it’s position when focused at infinity (this distance, known as the Back
Focal Length, or BFL, is given in the lens prescription), the other positions the film plane absolutely
based on first principals of the lens system. 

In the absolute method, given a point in object space a distance z along the axis from plane P, the
following fundamental lens equation holds [#!smith:optics!#]: 

1/z’ - 1/z = 1/ f ’   (4)

where z’ is the image space distance along the axis from plane P’. Since z and z’ are measured from
different planes, we introduce another variable t as the difference between them. 

We can use t in relative positioning, which translates the lens (not the film plane!) from an initial
position focused at infinity in order to pull-focus onto a desired point in object space. To find the
distance T we have to translate from the film plane, we use the conjugate equation to derive [#!kolb!#]: 

T2 + T(2 f ’ + t - z) + f ’2 = 0   (5)

The two roots correspond to the lens being closer to the image or the object. We assume that the former
will always be the case and so we select the smaller of the two solutions. 

While either focusing method would work, we initially chose to position the lens system at a fixed point
in space-the Inventor eye space. Hence moving the lens during focusing proved problematic. Instead, we
move the film plane using the absolute positioning method discussed previously. 



As the distance between the film plane and back lens varies with focus, the image disk subtended by the
cone of light that is cast onto the film plane changes in size accordingly. Our system accurately
represents this effect as an apparent change in field-of-view. 

    
Zoom 

   
Figure 6: Computing the height angle

In order to present an accurate preview of the rendered image in Ivcam, it is necessary to appropriately
adjust the height angle of the camera. Computing the height angle of a thin lens approximation is
straightforward. As can be seen in Figure 6, the distance to the film plane, z and the focal plane, Z, as
measured from the principal plane, P, the height of the film plane, h, and the height of image of the film
plane at the focal plane, H, are related by similar triangles [#!smith:optics!#]: 

h/z = H/Z   (6)

The height angle, , is then given by: 

  (7)

In Ivcam h is fixed at 12mm (since our film plane is 36x24mm), and z is computed as described
previously in order to focus the system (with appropriate adjustments for our thick lens). Hence  can
be computed with minimal effort. Unfortunately, the resulting angle accurately reflects the formed
image when only projected from the principal plane of the lens system. The Inventor camera is
physically located at the front of the lens system. This introduces a slight error in the preview, which
becomes increasingly noticeable as the camera is moved very close to objects. 



This disparity could be corrected by placing the Inventor camera at the principal plane of the lens system
rather than the front of the lens. Associated modifications to the clipping planes would also be required.
Due to the time constraints of the project and the minimal error introduced by this adjustment, it is not
being accounted for at this time. 

    
UI Extensions 

We modified the Ivray’s scene viewer interface mainly in three ways. First, we added a camera menu,
from which several lens choices are available. Secondly, we extended the render area to show the focal
distance as a plane in world space. Lastly, we added a thumb wheel used to control the focal distance. 

Camera Menu 

Adding the camera selection menu is straight forward. When a selection is made, Ivcam immediately
updates the Inventor preview area to reflect the correct preview for the selected lens. This is done by
updating the height angle for the Inventor perspective camera node using the calculations discussed in
section 3.2.1. This is a useful feature for comparing the views from different lenses. 

Focus Plane 

In a physical camera such as a single-lens reflex (SLR), focusing is done by looking through the
view-finder and adjusting the lens until the desired object is in focus. This is not possible with Ivcam
since Inventor’s hardware-supported rendering does not include focus support, and ray-tracing an image
with focal effects is too costly to compute interactively. We realized early on that focusing in Ivcam
would be difficult without seeing the focus effect immediately. 

Our solution is to insert a semi-transparent ‘‘plane’’ into the scene, representing the location of the focal
plane, which Inventor can render and animate interactively. While the focal plane is actually a spherical
manifold centered about the camera, it was decided that the plane provided a sufficient level of accuracy
for a preview mode. 

In an attempt to depict the distance to the focal plane, we shrink the plane as it moves away from the
camera. This provides feedback regarding the distance to the plane. Unfortunately, it presented a more
practical problem, since the plane may disappear behind objects. To alleviate this, David Sirkin
suggested using a both an infinite plane and co-planar scaled region for intuitive distance cuing. 

Focus Wheel 

The focus plane was initially implemented using a SoTranslate1Dragger node, which required the user
to drag the plane inside the render area. Since the user drags in the X-Y plane, while the plane moved
only in the Z direction, focusing became quite counter-intuitive. Instead, we now provide a thumb wheel
dedicated to moving the focal plane. 

We then further discovered moving the focal plane with constant speed makes focusing rather tedious,
especially in a large scene. This was corrected by increasing the speed of the plane proportional to the
speed of thumb wheel rotation. 



When focus changes, it is necessary to update the preview area to reflect the new viewing angle. 

    
Command Line Options 

While the enhanced UI makes it very easy to interactively compose an image to be rendered, rendering
large numbers of images in this fashion can be a tedious process. Especially when computing frames in
an animation, it is desirable to support command line methods of controlling the lens configurations. 

To this end, we added the following command line switches to support automatic image generation: 

-f distance sets the focal plane to the specified distance away from the camera in meters. 

-z factor scales the selected lens by the specified zoom factor. By linearly scaling the lens system,
it can be forced to have arbitrary EFL. Our supplied lenses all have an approximate EFL of
100mm. 

-o file forces Ivcam to save the generated image to the specified file, rather than an automatically
generated file name. 

-headlight toggles the headlight attached to the camera. This simulates flash photography. In
contrast to Ivray, the default is off , simulating a camera without flash. 

-batch starts Ivcam without invoking the GUI and automatically begins ray tracing. This is
especially useful for background rendering. 

    
Porting 

While not part of the original proposal, Ivcam was ported to Linux. Rendering a standard 360x240 frame
of the complexity seen in this report with full recursive shading and super-sampling takes almost 2 hours
on an Athena SGI O2. While optimized for graphics applications, the MIPS processors found in O2s are
not known for their floating point speed. Floating point isn’t exactly Intel’s forte, either, but empirical
evidence shows that a 450Mhz Pentium II renders almost  faster. 

The speed increase, plus the ability to work from the comforts of his office rather than an Athena cluster,
spurred Alex Snoeren to port Ivcam to Linux. Using Mesa [#!mesa!#], a publicly available OpenGL
library, LessTif [#!less!#], a free Motif clone, and a commercial Linux implementation of OpenInventor
[#!tgs!#], he succeeded in building a Linux version of Ivcam that was used to render a large fraction of
the images in our final presentation and report. 

    
Scene Modeling 



We selected our test scene in order to demonstrate the effects Ivcam creates and its convenience for
modeling and photographing. We settled on an antique telephone and textbook (Smith’s Modern Optical
Engineering [#!smith!#]) sitting on opposite ends of a tiled coffee table. Real-world and Inventor scenes
were photographed using optics with focal lengths of approximately 20 (Figures 7 and 10), 60 (Figures 8
and 11), and 180 millimeters (Figures 9 and 12). 

Unfortunately, camera manufacturers guard their lens prescriptions as trade secrets so we were unable to
get the specifications for the particular lenses used. The result is that there should be minimal difference
between the scenes in focus and depth-of-field (since the focal lengths are similar) but the perspectives
may be somewhat different (as the number and position of individual lens elements will vary). 

Note how in both photographed (Figures 7,8, and 9) and rendered images (Figures 10, 11, and 12)
focused on the foreground telephone, as the focal length increases: 

Perspective flattens 
Depth-of-focus decreases, and 
Vignetting decreases 

In the photographed and rendered images, when pulling focus between foreground telephone and
background book: 

Image blur shifts and 
Field-of-view changes 

    
Individual Contributions 
Our project proposal presented an initial division of work which, not surprisingly, turned out to be
completely irrelevant. The following is our attempt to more accurately describe our individual
contributions to the project. Absent from the individual sections, however, is the large amount of time
we all spent helping each other understand the physics that underlie each of our individual tasks. 

David M. Sirkin 

David was charged with the core focusing functionality (Section 3.2). He wrote the code that finds the
intersections that comprise the principal points and planes for the general case (telephoto, normal and
fisheye lenses) and returns the absolute or relative lens positioning. This involved considerable code
degugging (to find the cause that required a generalized solution), library research, and some creativity
(to find the eventual solution itself). 

Since the module interacts directly with Alex’s raytracing code and David Zhang’s object-to-filmplane
caculation code, David worked closely with the other teammates during the latter stages of the project.
Meanwhile, he spent many hours researching lenses and digging through old library stacks to turn up the
various prescriptions used in our implementation (Section 3.1). 

He painstakingly measured, built, modeled, and photographed our beautiful Inventor demonstration



scene, a life-sized mock-up of his living room as descried in Section 3.5. As the photographer in the
group, David was also called upon to explain where possible the real-world implications of what the
optical engineering underlying Ivcam implied. 

David also wrote much of the original project proposal and put together the proposal web page,
including doctoring Ivray-generated images to simulate the eventual Ivcam output. 

Alex C. Snoeren 

Alex’s main responsibility was the core lens-tracing functionality (Section 3.1.1). He developed the code
that traces individual rays from the film, through the lens system, and into object space. This included
developing the super-sampling and exposure techniques (Sections 3.1.3 and 3.1.4). Using the computed
focal distance and lens database as input, the lens tracing routine generates a standard 36x24mm film
image of the scene as viewed from the specified camera position. 

Due to the complex interaction between the main lens tracing code and the other components of the
system, Alex was also extensively involved in the initial design and debugging of the focusing
subsystem, although the coding and extensions to support fish-eye lenses were David Sirkin’s work. 

In addition, Alex initially did some limited UI hacking, researching where in the Ivray code our
extensions would need to be made. While the vast majority of UI modifications were done by David
Zhang, Alex made the first modifications to the menuing system to include Camera choices. 

In order to support the batched rendering process required to automatically generate the frames used in
our pull-focus animation, Alex added the additional command line switches described in Section 3.3.4.
This includes programmatic support for linearly scaling the defined lenses to any EFL. 

Alex authored the bulk of the final report, although each member wrote the sections describing their
own work, and everyone contributed to the final editing and project presentation. 

Finally, in what started as a side project, Alex was solely responsible for the Linux port (Section 3.4)
which turned out to be a tremendous time saver. The Linux version running on a Pentium II substantially
outperformed any of the SGI machines available to us, which allowed us to considerably decrease the
rendering time. 

David C. Zhang 

David’s main responsibility was to study Inventor and Motif widgets in order to modify the user
interface. David read the Inventor Mentor [#!invm!#] from front to back trying out different
combinations of sensors and engines, finally implementing those used them in the UI. 

David was also responsible many small hacks in Ivcam to correct clipping planes, change the default
headlight behavior, integrate the calcuated zoom factor with the preview mode, and change default
window size. His discovery of the meter as Inventor’s internal unit of measurement was fundamental in
the correct scaling of lens sizes. 

David also created the initial lens database, and wrote a visualization tool that plots lens diagrams (see



Figures 13-16) in xfig automatically from the our lens database. 

    
Lessons Learned 
We all learned a great deal about optics, both theoretically and how cameras as physical mechanisms
operate-as Alex puts it, ‘‘this is the best optics class [we’ve] ever taken.’’ On a related note, we also
learned about photography, both as an aesthetic and mechanical process. In preparing for our pull-focus
animation demonstrated during our project presentation, we considered several alternative functions for
the rate at which focus moves through the scene. We also generated a number of test scenes to use as a
storyboard for determining the eventual choice. The process is just what animators or cinematographers
use to design their shots, so we got some unexpected experience in that regard as well. 

We believe that our rendered Inventor scenes compare quite favorably with the photographed scenes.
We expected the perspective to be somewhat inconsistent due to the differences in lens prescription, but
otherwise the focus, exposure and vignetting are represented quite accurately. David Sirkin was
especially surprised to see his living room come to such accurate representation in the virtual world. 

We were somewhat disappointed that we couldn’t get access to prescriptions for our particular lenses,
hence we could not make quantitative comparisons between scenes. As pointed out by professor Teller,
a future project might be finding optics that we can match to prescriptions so a more accurate
comparison could be made. Such a rigorous comparison would surely turn up more effects that are
currently unaccounted for. 

In terms of pragmatics, nothing can quite prepare you for what it means to need 8 un-interrupted hours
of CPU time on Athena until you try it. It’s quite obvious that a practical implementation of our
approach for larger images would require a distributed implementation, possibly based on MPI. We
should also note that much pain could have been saved by heeding Professor Teller’s advice and
developing a more robust lens ray visualization tool, which might have allowed us to avoid many hours
of debugging, manually comparing ray origins and directions and finding intersections with lens
diagrams. In or haste to limit the scope of our project, which already was way too large, we struggled
through with a less robust visualization tool. 

In conclusion, we are quite excited by our results. While many 6.837 projects produce flashy simulations
or rendered animations, the end result is exactly that: a single artifact. What we set out to do, and
accomplished quite successfully, was to develop a fundamental mechanism for rendering graphics with
certain effects. Our project had a significant modeling and animation component as well, to be sure-we
spent over 300 CPU hours rendering our pull-focus video. But the tool we used to create it, Ivcam, can
also be used to render anyone’s models. 
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Appendix 
Ivcam is available from a CVS repository in our 6.837 team locker, /mit/6.837/F99/team15/CVS. Checking out the module
ivcam will create the following directories: 

ivcam/ contains the source code to Ivcam and the following subdirectories: 

ivcam/camera contains the camera datafiles used to generate the images corresponding to the
photos in this report. Invoke Ivcam with the -camread option to utilize them. 

ivcam/docs Contains the LATEX source for this report and all of the figures included therein.
docs/figs also contains the source code for David Zhang’s lens visualization utility. 

ivcam/images Contains the rendered images used in this report. They were created by invoking
Ivcam in the following fashion: ivcam -batch -j 16 -s r -f # -z # -camread
camera/cam-#.dat scene/livroom.iv 

ivcam/photos contains David Sirkin’s actual photographs, both original and re-touched. 

ivcam/presentation holds the HTML code for our presentation 

ivcam/scene stores the .iv files for our sample scene. 

ivcam/ivfiles is left over from our debugging; it contains the .iv files distributed with 6.837
Assignment 6. 

ivcam/ivwidgets and ivcam/vwraplib are the supporting code for the Ivcam UI 

Additionally, our team locker contains the directory /mit/6.837/F99/team15/images which holds both the pull-focus video
shown during our presentation and the 200-odd still frames that compose it. The csh script ivcam/pull-focus.sh will
generate the frames (it can be run on multiple machines at the same time), which then are aggregated together to create the
final QuickTime movie. 

About this document ... 
IVCam: Rendering with Real-Lens Optics

This document was generated using the LaTeX2HTML translator Version 98.1 release (February 19th,
1998) 

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University
of Leeds. 



The command line arguments were: 
latex2html -no_navigation -split 0 paper.tex. 

The translation was initiated by Alex C. Snoeren on 1999-12-03 

Footnotes

... similar1 
We were unable to obtain prescriptions for any of the lenses in our possession. Hence the rendered
images use lenses of the same general class (with similar EFLs), but not exactly the same as those
used in the photographs 

Alex C. Snoeren 
1999-12-03 


