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Abstract

Creating realistic images of non-rigid, fluid phenomena such as clouds, smoke, and fire is one of the
most interesting and challenging problems in computer graphics.  This project focuses on  modeling and
rendering the natural phenomenon of fire in an attempt to create a visually acceptable model of its
motion and appearance. 
  
  

Introduction

When William Reeves published his paper Particle Systems - A Technique for Modeling a Class of
Fuzzy Objects in 1983, he opened up a range of new possibilities for the field of computer graphics. 
Previously, graphics had been primarily successful when applied to the modeling of solid objects that
could be easily represented by geometrical primitives such as spheres, rectangles, and polygonal objects
(e.g. cars, furniture, buildings, and similar structures). Reeves’s paper presented a method for depicting
other types of objects, not as a set of primitive surface elements, but as a cloud of particle primitives that
defined the object’s volume. In his system, particles are created, given a certain motion, then eventually
die off. The particles can also undergo changes in form, size, color, location, transparency, mass, and
other similar characteristics. The modifications made to these characteristics depend on the type of



natural phenomenon being represented. 

There are many possible approaches to creating realistic natural motion in a particle system. Jos Stam
has written a number of papers detailing methods with which to move particles using turbulent wind
fields, fluid dynamics Navier-Stokes equation solvers, and diffusion processes (Stam 93, 95). Some
others methods rely on using noise and fractal functions to create a ’hypertexture’ lattice through which
the particles move (Ebert, et al). Other work has been done to move the particles in a mock frequency
domain using spectral synthesis before translating them back to a world space domain (Sakas 93). 

Similarly, there are many approaches to rendering the particles once a motion has been created. Simple
raytracing is often used, however it frequently cannot accurately reflect the gas-like nature of the particle
systems people are trying to render. Another method is to volumetrically render the particles using a
raymarching technique (Musgrave, in Ebert et al.). Other methods include stochastic rendering based on
random variables (Shinya 92). One reason we picked this project was the opportunity it afforded us to
look into these different issues and weigh their respective challenges, benefits, and disadvantages. 

Another motivating factor for this project came from the fact that our class would not be covering this
topic in much depth. Since their introduction, particle systems have grown steadily in usage to the point
where they are now a popular topic for computer graphics courses, as well as a common feature of
commercial graphics packages (Dynamation and Maya, for example) . Although these systems are
becoming more available in commercial packages and (in a smaller sense) in the public domain of
shareware, we felt it would benefit us greatly to look into this rapidly growing field, as there is still a lot
to be learned in creating a particle system and applying it to a simulation of some real world ’fuzzy’
modeling problem. 

Goals

For our 6.837 Final Project, we set out to create a powerful and easy to use program that would create a
continuous fire animation. We also wanted the program to be modular and robust enough to allow
extensions for modeling various other natural phenomena using particle systems. 

The goal for our fire program was twofold. First, we intended to write a particle simulator to model a
realistic approximation of fire: its motion and general coloring. Second, we aimed to create a rendering
mechanism to draw the particles more accurately, and with more detail. Additionally, to facilitate
interaction with the system, we wanted to provide a front-end GUI. The GUI would allow a user to
customize a set of options to render a number of frames to create a short, unique, and dynamic animated
clip of the fire. 
  

Achievements
We were able to accomplish most of our goals. We coded a rather powerful and easy to use GUI which
interfaces with both our particle system simulator and our renderer. A user can run our program, set a
number of options in the GUI detailing how they want the fire to act and look, then the particle system
and renderer can each run according to their specifications, writing a series of frames to disk (as TIFF



files). 

Currently, due to time constraints, the renderer and particle system simulator we have implemented are
fire-specific.  However, our program has been designed with highly modular object-based methods, such
that one could easily implement particle systems to simulate smoke, steam, or other similar effects. A
corresponding renderer could be easily implemented as well. 
  

Approach

Our project was essentially divided into two sections: particle simulation and rendering. For our
simulation, we intended to create an approximation of the Navier-Stokes fluid dynamics equations for
our fire motion. For the rendering, we intended to modify a raytracer to handle "warped blobbies" as
described by Jos Stam in his paper Depicting Fire and Other Gaseous Phenomena Using Diffusion
Processes. However, in doing research we realized that these approaches were far more complex than
we could realistically handle given the time frame of the project. We then researched the use of
hypertextures in Texturing and Modeling: A Procedural Approach by Ebert et al., which described
creating approximations of physical phenomena using specialized spatial noise and rendering them with
a volumetric raymarching technique. This approach seemed much more realizable in the project’s time
frame. 
  

Implementation Overview

We started by building a particle system similar to the one described in Reeves’ paper (Reeves 83). 
Since his system was used to create a fire effect in Star Trek II: The Wrath of Khan, it seemed
well-suited to our task. The Reeves method emits a number of particles from an emission area, assigns
each particle initial positions, velocities, colors and lifespans, moves them in some fashion at each time
step, then extinguishes them when their lifespan is completed. Though other (more recent) particle
system implementations allow for particle-to-object collisions and particle-to-particle interactions, for
the purposes of modeling fire we felt that these would slow down our processing considerably, and they
would not be as important as in, for example, depicting flocking behaviors (another popular application
of particle systems). 

Our first particle system utilized our Point and Particle classes
(described below) to represent the individual particles, and the
ParticleSystem class to give them motion and draw them. We also
created a simple display mechanism using OpenGL (specifically, the
GLUT) such that the particles could be rapidly drawn to the screen as
short lines (one vertex at position, the other at position +
velocity*timestep). We also created a rough version of our GUI to be
using simple OpenGL-GLUT event handling. We gave our particles
randomized colors and simple upward motions. The result is shown to
the left. 

Once we had a simple system running, we turned our attention to motion simulation. It would not be
enough to apply random forces to our particles, as we needed to create a repeatable motion (each particle
should be affected the same way when the simulation is started over). The book Texturing and Modeling



describes various applications of pseudo-random noise functions in creating a ’hypertexture’ grid
through which objects would move. The pseudo-random functions guarantee that repeated calls to the
noise functions with the same inputs would produce the same results. For a more in-depth discussion of
the noise, noise/gradient, and fractal functions we used, see the sections under ’Various Math
Functions’. 

We chose to represent the motion of our particles as a result of
summation of several forces. After observing fire in all its splendor,
we decided that there were three prevailing forces acting on fire. The
first was an upward component, which we called a rising function.
The second was a prevailing wind function causing a "gusty"
sideways motion of the fire. Finally, there seemed to be some
randomized turbulence affecting the fire as a whole. We used our
noise and fractal functions to moderate the effects of these primary
forces. We also determined that the temperature of fire (as opposed to
the mass of the particles in traditional systems) most closely
determined the effect of these forces on its motion. As fire gets cooler,
it is more effected by wind, and turbulence, and rises more slowly.  Therefore, we added a temperature
attribute to our particles and made their motion functions and colors dependent on the temperature. An
initial test of our particle fire is shown above. For drawing the particles, we simply represented them as
GL lines with vertices dependent on the current position and velocity of the particles, and colors
dependent on their temperature. 

The final part of our project was the rendering mechanism. We built a simple raycaster/raymarcher to do
volumetric rendering of particles. We cast a ray from each pixel point in our screen. Our particles were
represented as spheres with a density falloff from the center of the sphere to the edges, determined by
the particle’s temperature. As the ray passed through our space, it checked against the particles to see
which of them intersected the ray. That particle’s influence on the ray was calculated according to its
density along the span of the ray intersecting the sphere. Each span was added to the ray, then once all
particles had been checked and the spans sorted according to t values from the eyepoint to the far
clipping plane, we marched down the ray.  Calculating contributions of the density spans to the color
and opacity of the ray, we combined all these influences into the total color of the pixel point we cast the
ray from. An example of this rendering is shown below. 



Implementation Problems

As we see it, there are two major problems with our fire rendering. First, there is no accounting for the
velocity of the particle in the rendering. Second, there is no motion blur. The first could be solved by
representing our particles as ellipses instead of spheres, with the focal points determined by particle
position and velocity (similar to the way in which we draw the GL line representation). As for motion
blur, we would have to calculate two successive frames simultaneously then combine the position and
velocity of a point in each frame to come up with a blurred image. 

A number of additions could also be made to our current fire rendering methods. Most importantly, if
the volumetric sphere objects were back-traced through previous steps and correspondingly warped
according to previous forces, such as Jos Stam describes in his work (Stam 93, 95), our fire could have a
more tensile nature and look less solid. 
  

Implementation Specifics

Mathematical Functions

In creating the particle motion simulations, we used several mathematical techniques described in
Texturing & Modeling to create pseudo-randomized forces on our particles. 

Noise

Our noise functions were based on the Perlin noise functions described in Texturing & Modeling. The
first type of noise described involved using a permutation table to create a pseudo-randomized sequence.
The table depicts a ’lattice’ of numbers - feeding sequential integers into this lattice gives back the
pseudo-random, repeatable sequence. However, simply using this type of noise function creates grid
artifacts. To counteract the grid-pattern inherent in lattice noise, we also implemented a gradient
mechanism, which calculates a gradient at the cell corners of the lattice, then interpolates between them.
When combined, noise and gradient functions have far less artifacts than either one alone. A more
complete discussion of these issues is can be found in Texturing & Modeling, pp. 66-74. 

Fractal

A fractal is defined by F. Musgrave as "a geometrically complex object, the complexity of which arises
through the repetition of form over some range of scale." (Ebert et al., 277) We implemented a fractal
class to simulate complex motion of our particles. Our fractal function is similar to the one described by
Musgrave in Texturing & Modeling (pg. 282) but also allows for the calculation of a gradient at the
fractal point for smoother motion interpolation. The Fractal class relies heavily on the Noise class, and
provides standard variable control features such as dimension, lacunarity, and cutoff (these features are
referred to as H, lacunarity, and octaves in the Musgrave text). The dimension of a fractal defines its
underlying shape, lacunarity the frequency, cutoff the amount of repetitive processing done of the fractal
to create the final shape. Since the fractal function is implemented to give back numbers in the range (-1,
1), we also implemented helper functions to return a range from (0, 1). 

Particle System Functions



Point

Our Point class is a data abstraction with 3 data members: x, y, and z coordinates. We used this class to
represent any quantity that has 3 components; vectors, positions, colors, etc.  All 3-d vectors we utilize
in our system (velocities and wind forces, for example) make use of the Point class for their
representation. The Point class provides supplemental mathematical functions to add, subtract, multiply
and divide Points against each other and against floats. Finally, simple vector arithemetic functions were
added to compute dot products, cross products, and to handle vector normalization. 

Particle

Our Particle class is a container for particle attributes. It holds the particle position, velocity, color,
temperature, age, lifespan and particle id number. Position and velocity were used to store the motion of
the particle. Color and temperature were used to draw the particles as colored lines in the simple GL
drawing mode. Temperature was used in the volumetric rendering scheme as well, to compute particle
sizes and densities. Age, lifespan, and temperature were used to determine how long each particle would
live. This class could be potentially expanded to include such other characteristics as mass and
electromagnetic charge. 

ParticleSystem and FireSystem

Our ParticleSystem is a general class that handles particle emission, movement, deletion, and simple line
drawing. ParticleSystem includes a step() function that upon every step will create particles, call an
appropriate function to update (modify) particles as necessary, and finally delete any old particles that
have outlived their usefulness. A ParticleSystem also has another major function, drawScene, which also
acts on a time step and draws all of our active particles at that time step as GL lines on the screen.
FireSystem is a subclass of ParticleSystem that treats the particles specifically as fire particles. While
particle creation and deletion are inherited from ParticleSystem, the updating of its particles is different.
The creation of a FireSystem requires a number of arguments, several directly applicable to the particle
system (such as emitter and fractal characteristics), as well as fire-specific variables such as coolRate
(how quickly the particles lose their temperature), rise (the strength of the rise force on the particles),
wind (a vector describing the direction of the overall wind), turbAmp and turbScale (to define the
strength of the turbulence force on the particles. 

Other functions of interest in FireSystem include the functions to calculate rise, wind, and turbulence
forces. RiseForce returns a vector that calculates a linear function of the rise variable designed to have
less effect on the particle as it cools. WindForce returns a vector that uses a fractal function of time to
create a varied wind force, and calculated to have more effect on the particle as it cools. TurbForce also
returns a vector, calculated by a fractal and gradient function based on the particle’s position and the
current time, having more effect on the particle as it cools. 

Volumetric Renderer

The volumetric renderer was an extension of the raymarcher idea put forth by Musgrave in Chapter 9 of
Texturing & Modeling. The general theory was to cast rays from each pixel on the screen, then ’march’
down the ray checking for intersections the particles. At each march step, particles were checked to see
if they influenced that section of the ray. Each particle was represented as a Sphere with a range of
influence which could be used to determine how much that particle contributed to a color at that step of
the ray. Sphere influence was determined by the radius and weight of the sphere, calculated according to



the particles’ temperature. After the entire ray had been marched down, we collected all the influences
on the ray into a final color and opacity. 

Render

Our main rendering handler (encapsulated in Render.c) contains the functions needed for calculating
Ray origins and directions, creating the VolSpheres from the particles, then intersecting these
VolSpheres with each ray. Ray origins here are taken as the eye point dictated into the GUI (and also
used in setting the corresponding projection matrix in OpenGL). The direction is then found by using
gluUnProject twice to unProject screen-space onto world-space coordinates at two different z-depths and
interpolating them to find a direction. 

The renderer creates rays for every screen space pixel, casts them to find their intersections with any of
the current Volumetric objects in the scene, then shades the pixel as is necessary (see Ray). 

Ray

Our ray class was based on the ray caster from Problem Set 6. The Ray class holds an eye point and
direction for a ray through each pixel in screen space. However, our ray was also responsible for
collecting particle influences onto itself. We chose to represent these as ’spans’ that would accumulate
along the ray through intersecting the ray with VolSpheres. VolSpan is a structure internal to ray that has
a tMin and tMax to mark the extent of the span on the ray, and a pointer to the object that the span came
from to be used in density calculations. So, when we started the ray-particle intersection calculations, we
would add a VolSpan to a vector of VolSpans internal to the ray. These VolSpans were then sorted so
that we could march down the ray and calculate the color of the pixel by calculating the contributions of
the spans to the overall color. 

Box

Our Box class provides a simple bounding box in space. Two points are enough to specify a unique box
in space, hence that is our data representation for the box. The class provides methods that test whether a
given point intersects the box, and whether a given ray intersects the box. Box is used by our other
volumetric object classes. 

VolObj

VolObj is a generic supertype, extended by VolSphere (and potentially VolEllipse in future
implementations). Its constructor takes a Box as an argument. VolObj provides virtual methods to
support density calculations of its subclasses and to Ray-object intersections. The intersectRay method
of VolObj differs from Box’s method of the same name in that its subclasses will add the intersecting
span (if existent) to the Ray. 

Our VolObj class is also used in our data abstraction to efficiently store and sort the particles (a kdtree
that we call Jtree) in that VolObj is the data representation for the Jtree’s partitions of space. 

VolSphere

In the volumetric rendering scheme, our particles were represented by VolSpheres instead of points in
space. The VolSphere was centered at the particle’s position, then given a radius and a weight. The



weight and radius allowed us to calculate a density for each sphere that fell off in a smoothstep from the
center of the particle to the edges. VolSphere also implements the intersectRay function which will add
a VolSpan to the Ray according to the intersection length. 

Jtree

Jtree is our implementation of a k-d tree class. A k-d tree provides more efficient storage for a large
collection of particles. Storing the particles in a vector may be appropriate for a small number of
particles, but as the collection grows larger, sorting becomes exorbitantly expensive (in terms of cpu
time) and it is impossible to render frames in a timely fashion. 

K-d trees partition space into buckets containing a pre specified number of items (in our case, 8). Jtree
contains a constructor that makes a k-d tree from an array of VolObj, and a method to intersect a ray
with the Jtree of particles. The intersect method checks first if the ray intersects the bounding box of the
entire tree. If it does not, it can return immediately. If it does intersect, it recurses through the tree,
calling the intersect method on the right and left child of the current node. The base case of recursion is
reaching a leaf of the tree, the partition of VolSpheres that the ray intersects with. The routine then calls
the intersectRay method for each of the VolSpheres in that VolObj leaf. (see the intersectRay method
described in VolSphere and VolObj). Jtree reduces the computation time from O(n^2) to O(n lg n). 

Interface

main.c



The Graphical User Interface (GUI) is the mechanism for the user to
interact with our system by updating many system variables. We
chose to implement our gui using the GLUI API. It was a
convenient choice because it was designed to be compatible with
OpenGL, and the API provides all the interface components
necessary to create an intuitive and attractive user interface. 

The GUI is made up of several rollout panels, grouping the system
variables by their function: Particle System Settings, Camera
Settings, and Program Control. 

Particle System Settings This rollout contains all the variables
having to do with the Particle System, in general. There are three
panels: for the particle emitter, timing, and variables unique to the
Fire System, such as cooling rate of particles, rise rate, wind forces
and turbulence. In the future, should we implement a Water System,
or Steam System, additional panels could be added to the Particle
System rollout for the variables specific to each of those systems.
There is also a button that, when pressed, will return all the settings
to a pre-defined default set of system variables. When any Particle
System settings are changed, in order for the changes to take effect,
the user must click the "Reset & Update". This will destroy the
current Particle System, and create a new one with the modified
settings. 

Camera Settings This rollout contains textfields to change the
location of the eye point, the lookat point, field of view, aspect ratio,
and near and far clip planes. These can all be updated in realtime.
These work through accepting the necessary variables, and then
creating the necessary projection matrices in OpenGL using
primarily gluPerspective and gluLookat. 

Program Control This rollout contains the global program control
functions (Start, Stop, and Reset&Update), and checkboxes for the
user to specify whether or not to write the particles and/or renders to
file. Textfields are also provided for the user to specify the
basename and location for the written frames. 

At the bottom of the GUI is a "quit" button, to exit the program. 
  
  
  
  

  
  
  

Individual Contributions 



Christian Baekkelund: 

Parts of the GUI, including all event and process handlers 
All the OpenGL GLUT, GLU, and GL routines 
Some of the Particle and Point classes 
Most of the ParticleSystem class and some of the FireSystem class 
The eye-ray creation and main rendering loop 
The TIFF file saving mechanisms for particle systems and renderings 

Jesscia Laszlo: 

Parts of the GUI 
The KD-tree 
Some of the Particle and Point classes 
Testing of final rendering look 

Christa Starr: 

The pixel shading functionality (across many classes) 
Most of the FireSystem class and some of the ParticleSystem class 
The VolObject and VolSphere classes 
The Bounding Box 
The Ray Marching mechanism (the Ray class) 

Lessons Learned 
Large software projects present many difficulties not immediately obvious from the outset, even when
the problem to be solved appears straightforward. Coordinating the implementation of the different
segments of the project present logistical difficulties. Debugging can be extremely frustrating and
tedious, as a small bug can result in catastrophic errors hindering the progress of all the members of a
group. We discovered, over the term of the project, that particle systems, while widely used, are not
trivial, and that 6 weeks was not enough time to implement the long laundry list of items we initially set
forth. One of the major discoveries we made was the complexity of the math involved in modeling
complicated volumetric objects discussed in the Stam/Fiume paper, as well as the difficulty of
implementing solutions to fluid dynamics equations. If the opportunity existed for us to continue our
work, in order to make a more realistic representation of fire, we would want to implement the more
complicated volumetric object (VolEllipse), and compare the quality and realism of the rendered final
images. 

We also discovered the glories of noise and fractal functions.  We used them in many parts of our
particle system and renderer.  It seems like there’s nothing they can’t do. 
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Appendix 

makemovie -- a utility provided on SGI machines that we used to turn the Tiff files generated by
our Renderer into a QuickTime or MPEG movie. 
our program is dependent upon OpenGL, the GLUT, the GLUI, and the SGI Tiff Library 
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