

CIE

- First in charge of measuring brightness for different light chromaticities
- Predict brightness of arbitrary spectrum (linearity)

Photometric quantities are calculated by muitiplying the stimulus, Φ_{s}, and the standard photopic observer, $\boldsymbol{V}_{\text {, wavelength }}$. by wavelength, to give the curve ($\$ V V_{1}$. The area under this curve, suitably normalized, is the photometric quantity. PhotoWhenever "lum" is used, such as lumen, illuminance, or luminance, the standard photopic coserver has been incorpo ated. The most common, luminance, lluminance, and luminance factor, aro dotined further in this chapler. Photometric
coloulations are similar to tristimulus calculations, described in detail on pages $56-59$. calculations are similar to tristimulus calculations, described in detail on pages $56-59$.

CIE color matching: same for color

- Primaries (synthesis) at 435.8, 546.1 and 700
- Chosen for robust reproduction, good separation in red-green
- Measure matching curves as function of wavelength (analysis)

CIE color matching

- Primaries (synthesis) at 435.8, 546.1 and 700 - For robust reproduction, good separation in red-green
- Measure matching curves as function of wavelength (analysis)
- Note that the primaries (monochromatic $435.8,546.1$ and 700 nm) are not the same as the matching curve!!!)

Color Matching Problem

- Some colors cannot be produced using only positively weighted primaries
- Solution: add light on the other side!

CIE color matching

- Problem with these curves:
- Negative values (was a big deal to implement in a measurement hardware)
- No direct notion of brightness
- Hence the definition of a new standard

CIE color matching: what does it mean?

- If I have a given spectrum X
- I compute its response to the 3 matching curves (multiply and integrate)
- I use these 3 responses to scale my 3 primaries (435.8, 546.1 and 700nm)
- I get a metamer of X (perfect color reproduction)
- However, note that one of the responses could be negative

CIE XYZ

- The most widely recognized color space
- New set of measurement, some linear transformation
- Y corresponds to brightness (1924 CIE standard photometric observer)
- No negative value of matching curve
- But no physically-realizable primary
(negative values in primary rather than in matching curve)

Color Vision

CIE XYZ

- The most widely recognized color space
- A number of the motivations are historical
- Now we're stuck with it ;-(

Color Vision

CIE color space

- Can think of X, Y, Z as coordinates
- Linear transform from typical RGB or LMS

- But remember, it is always good to agree on a standard
- Although, well, there are two versions of CIE XYZ (1931 and 1964)
- We'll ignore this!

13

- Always positive (because physical spectrum is positive and matching curves are positives)
- Note that many points in XYZ do not correspond to visible colors!

Chromaticity diagrams

- Chromaticity diagram:
- normalize against $X+Y+Z$:
- Visualize x and y
- z easy to deduce: $z=1-x-y$
- To get full color, usually specify x, y and Y
- because Y is brightness
- $\mathrm{X}=\mathrm{xY} / \mathrm{y} ; \mathrm{Z}=(1.0-\mathrm{x}-\mathrm{y}) \mathrm{Y} / \mathrm{y}$
- Why not normalize against Y?
- Not clear!

Color Vision

Pure wavelength in chromaticity diagram

- Then y increases

Pure wavelength in chromaticity diagram

- Green: y is big

Color Vision
19

Pure wavelength in chromaticity diagram

- Yellow: x \& y are equal

Color Vision

CIE chromaticity diagram

- Spectrally pure colors lie along boundary
- Weird shape comes from shape of matching curves and restriction to positive stimuli
- Note that some hues do not correspond to a pure spectrum (purple-violet)
- Standard white light (approximates sunlight) at C
Color Vision

In summary

- It's all about linear algebra
- Projection from infinite-dimensional spectrum to a 3D response
- Then any space based on color matching and metamerism can be converted by 3×3 matrix
- Complicated because
- Projection from infinite-dimensional space
- Non-orthogonal basis (cone responses overlap)
- No negative light
- In fact, the orthogonal (synthesis) basis of XYZ requires negative values.

Questions?

Lippman spectral color reproduction
Color Vision

Hering 1874: Opponent Colors

- Hypothesis of 3 types of receptors: Red/Green, Blue/Yellow, Black/White
- Explains well several visual phenomena

Opponent Colors

32

Hue Saturation Value

- Value: from black to white
- Hue: dominant color (red, orange, etc)
- Saturation: from gray to vivid color
- HSV double cone

CIE color space

- Hue, saturation and value of a color A
- Use white point C
- Hue: project A onto spectrum curve
- Saturation: ~ distance from C
- Value: Y

Perceptual color difference

- In color space CIE-XYZ, the perceived distance between colors is not equal everywhere
- Can be represented by ellipses of perceived differences (set of colors that look no more different than a given threshold)
- Measured by MacAdam
- Same for all linear color spaces (RBG, LMS, etc.)

color vision

CIELAB (a.k.a. CIE $L^{*} a^{*} b^{*}$)

- The reference perceptually uniform color space
- L: lightness
- a and b: color opponents
- $\mathrm{X}_{0}, \mathrm{Y}_{0}$, and Z_{0} are used to colorbalance: they're the color of the
 reference white

Color Vision

Contrast Sensitivity

- Sine Wave grating
- What contrast is necessary to make the grating visible?

Color Vision
"Well, that's an interesting bit of trivia-
I guess I do only dream in black and white."

42

Opponents and image compression

- JPG, MPG
- Color opponents instead of RGB
- Compress color more than
luminance

olor Vision
45

JPEG Compression

- Perform DCT to work in frequency space
- Local DCT, 8x8 blocks
- Use CSF for quantization
(more bits for sensitivity with more contrast)
- Other usual coding tricks

Questions?

Color synthesis: additive vs. subtractive

- Often, mix of additive and subtractive

Gamut

- Every device with three primaries can produce only colors inside some (approx.) triangle
- This set is called a color gamut - (Why can't RGB give all visible colors?)
- Usually, nonlinearities warp the triangle - Also, gamut varies with luminance

Gamut of printer and CRT visualized in Lab

The infamous gamma curve

- A gamma curve $\mathrm{x}->\mathrm{x}^{\gamma}$ is used for many reasons:

- CRT response
- Color quantization
- Perceptual effect
- Sometimes with $\gamma>1$, sometimes $\gamma<1$
- These issues are often oversimplified/confused, including in prominent textbooks
- i.e. they are explained wrong

Cathode Ray Tube gamma

- The relationship between voltage and light intensity is non linear
- Can be approximated by an exponent 2.5
- Must be inverted to get linear response

From Ponton's FAQ
http://www.poynton.com/

Stevens effect

- Perceived contrast increases with luminance

57

Perceptual effect

- We perceive colors in darker environment less vivid
- Must be compensated by boosting colors

Log scene luminance relative to white
Fig 6.13. The displayed denuty of the ninestep grey sale ploted againut the log
luminances of is steps relative to white. Reflection priat miems have a dieplace

gamma of 10, cutsbectraniparceccy yptemsa diaplayed ganma of 1.25 , and projected
ranmparency mutema a dipplyed gamma of 15

Gamma is messy

- Because it's poorly understood
- Because it's poorly standardized
- Half of the images on the net are linear, half are gamma-compressed
- Because it might make your image processing non-linear
- A weighted average of pixel values is not a linear convolution! Bad for antialiasing
- But it is often desirable for other image processing, because then it corresponds more to human perception of brightness

Selected Bibliography

Vision Science by Stephen E. Palmer MIT Press; ISBN: 026216183
760 pages (May 7.1999)
760 pages (May 7, 1999)

Billmeyer and Saltzman's Principles of Color Technology, 3rd
Edition
by Roy S. Berns, Fred W. Billmeyer, Max Saltzman
Wiley-Interscience: ISBN: 0471119459X
304 pages 3 edititon (March 31, 2000)

Vision and Art : The Biology of Seeing
Vision and Art : The Elology of Seeing Hary N Abrams; ISBN: 0810904063 . 208 pages (May 2002)

Selected Bibliography

"खुण्णः

The Reproduction of Color by R. W. G. Hunt Fountain Press, 1995

Color Appearance Models by Mark Fairchild
Addison Wesley, 1998

63

62

