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Color Vision 1

Color

Color Vision 2

Last time?

Color Vision 3

Big picture
• It’s all linear!
• But non-

orthogonal 
bases

• Metamers: look 
the same, 
different 
spectrum

Light reflectance

Cone responses

Stimulus

multiply

Multiply wavelength by wavelength

Integrate Color Vision 4

CIE
• First in charge of measuring brightness for 

different light chromaticities
• Predict brightness of arbitrary spectrum (linearity)

Color Vision 5

Questions?

Color Vision 6

CIE color matching: same for color
• Primaries (synthesis) at 435.8, 546.1 and 700 

– Chosen for robust reproduction, good separation in red-green

• Measure matching curves as function of wavelength 
(analysis)
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Color Vision 7

CIE color matching
• Primaries (synthesis) at 435.8, 546.1 and 700 

– For robust reproduction, good separation in red-green

• Measure matching curves 
as function of wavelength 
(analysis)

• Note that the primaries 
(monochromatic 
435.8, 546.1 and 700nm) 
are not the same as 
the matching curve!!!) 

Color Vision 8

CIE color matching: what does it mean?
• If I have a given spectrum X
• I compute its response to the 3 matching curves

(multiply and integrate)
• I use these 3 responses to 

scale my 3 primaries 
(435.8, 546.1 and 700nm)

• I get a metamer of X
(perfect color reproduction)

• However, note that one of 
the responses could be 
negative

Color Vision 9

Color Matching Problem

• Some colors cannot be produced using only 
positively weighted primaries

• Solution: add light on the other side!

Color Vision 10

Questions?

Color Vision 11

CIE color matching
• Problem with these curves:

– Negative values (was a big 
deal to implement in a 
measurement hardware)

– No direct notion of 
brightness

• Hence the definition 
of a new standard

Color Vision 12

CIE XYZ
• The most widely recognized color space
• New set of measurement, some linear transformation
• Y corresponds to brightness 

(1924 CIE standard 
photometric observer)

• No negative value of 
matching curve

• But no physically-realizable 
primary 
(negative values in primary 
rather than in matching curve)
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Color Vision 13

CIE XYZ
• The most widely recognized color space
• A number of the motivations are historical
• Now we’re stuck with it ;-(
• But remember, it is always 

good to agree on a standard

• Although, well, there are 
two versions of CIE XYZ 
(1931 and 1964)

• We’ll ignore this!

Color Vision 14

CIE color space
• Can think of X, Y , Z          

as coordinates

• Linear transform from 
typical RGB or LMS

• Always positive
(because physical spectrum 
is positive and matching 
curves are positives)

• Note that many points in 
XYZ   do not correspond 
to visible colors!

Color Vision 15

Chromaticity diagrams
• 3D space are tough to visualize

• Often cares about chrominance, not 
luminance

• Hence a 2D chromaticity diagram:

– normalize against X + Y + Z:

– Perspective projection to plane 
X+Y+Z=1

Color Vision 16

Chromaticity diagrams
• Chromaticity diagram:

– normalize against X + Y + Z:

– Visualize x and y

– z easy to deduce: z=1-x-y

• To get full color, 
usually specify x, y and Y

– because Y is brightness

– X= xY/y; Z=(1.0-x-y) Y/y

• Why not normalize against Y?

– Not clear! 

Color Vision 17

Pure wavelength in chromaticity diagram
• Blue: big value of Z, therefore x and y small

Color Vision 18

Pure wavelength in chromaticity diagram
• Then y increases
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Color Vision 19

Pure wavelength in chromaticity diagram
• Green: y is big

Color Vision 20

Pure wavelength in chromaticity diagram
• Yellow: x & y are equal

Color Vision 21

Pure wavelength in chromaticity diagram
• Red: big x, but y is not null

Color Vision 22

CIE chromaticity diagram
• Spectrally pure colors lie 

along boundary

• Weird shape comes from 
shape of matching curves
and restriction to positive 
stimuli

• Note that some hues
do not correspond to 
a pure spectrum 
(purple-violet)

• Standard white light 
(approximates sunlight) at 
C

C

Color Vision 23

XYZ vs. RGB
• Linear transform
• XYZ is rarely used for storage
• There are tons of flavors of RGB

– sRGB, Adobe RGB
– Different matrices!

• XYZ is more standardized
• XYZ can reproduce all colors with positive values
• XYZ is not realizable physically !!

– What happens if you go “off” the diagram
– In fact, the orthogonal (synthesis) basis of XYZ requires 

negative values.

Color Vision 24

In summary
• It’s all about linear algebra

– Projection from infinite-dimensional spectrum to a 3D 
response

– Then any space based on color matching and 
metamerism can be converted by 3x3 matrix

• Complicated because
– Projection from infinite-dimensional space
– Non-orthogonal basis (cone responses overlap)
– No negative light
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Color Vision 25

Questions?

Lippman spectral color reproduction
Color Vision 26

Remember von Helmholtz
• Colors as relative responses

(ratios)
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Color Vision 27

Hering 1874: Opponent Colors
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Blue/Yellow

Receptors
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Receptors

• Hypothesis of 3 types of receptors: 
Red/Green, Blue/Yellow, Black/White

• Explains well several visual phenomena

• Hypothesis of 3 types of receptors: 
Red/Green, Blue/Yellow, Black/White

• Explains well several visual phenomena

Color Vision 28

Dual Process Theory
• The input is LMS
• The output has a different 

parameterization:
– Light-dark
– Blue-yellow
– Red-green

Trichromatic

Stage

Opponent-Process
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Color Vision 29

Color opponents wiring

• Sums for 
brightness

• Differences 
for color 
opponents

• At the end, 
it’s just a 
3x3 matrix 
compared to 
LMS

Color Vision 30

After-Image
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Color Vision 31

After-Image-white

Color Vision 32

Opponent Colors

ImageImage AfterimageAfterimage

Color Vision 33

Color reparameterization

• The input is LMS
• The output has a different 

parameterization:
– Light-dark
– Blue-yellow
– Red-green

• A later stage may reparameterize:
– Brightness or Luminance or Value
– Hue
– Saturation
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Color Vision 34

Hue Saturation Value
• Value: from black to white
• Hue: dominant color (red, orange, etc)
• Saturation: from gray to vivid color
• HSV double cone

value

saturation

saturation

hue

Color Vision 35

Hue Saturation Value
• One interpretation 

in spectrum space
• Not the only one

because of metamerism

• Dominant wavelength (hue)
• Intensity
• Purity (saturation)

Color Vision 36

CIE color space
• Hue, saturation and 

value of a color A
• Use white point C
• Hue: project A onto 

spectrum curve
• Saturation: ~ distance 

from C
• Value: Y

C
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Color Vision 37

Questions?

Color Vision 38

Perceptual color difference
• In color space CIE-XYZ, the perceived distance between 

colors is not equal everywhere
• Can be represented by ellipses of perceived differences 

(set of colors that look no more different than a given 
threshold)

• Measured by MacAdam
• Same for all linear color spaces (RBG, LMS, etc.)

Source: [Wyszecki and Stiles ’82]

Color Vision 39

Perceptually Uniform Space: MacAdam
• In perceptually uniform color space, Euclidean distances 

reflect perceived differences between colors
• MacAdam ellipses (areas of unperceivable differences) 

become circles 
• Non-linear mapping, many solutions have been proposed

Source: [Wyszecki and Stiles ’82] Color Vision 40

CIELAB (a.k.a. CIE L*a*b*)

Source: [Wyszecki and Stiles ’82]

• The reference perceptually 
uniform color space

• L: lightness 
• a and b: color opponents

• X0, Y0, and Z0 are used to color-
balance: they’re the color of the 
reference white

Color Vision 41

Question?

Color Vision 42

Contrast Sensitivity
• Sine Wave grating
• What contrast is necessary to make the grating 

visible?
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Color Vision 43

Contrast Sensitivity Function (CSF)

Color Vision 44

Contrast Sensitivity Function (CSF)

Color Vision 45

Opponents and image compression
• JPG, MPG
• Color 

opponents 
instead of 
RGB

• Compress 
color more 
than 
luminance

Color Vision 46

JPEG Compression
• Perform DCT to work in frequency space

– Local DCT, 8x8 blocks
• Use CSF for quantization 

(more bits for sensitivity with more contrast)
• Other usual coding tricks

Color Vision 47

Questions?

Color Vision 48

Color synthesis: additive vs. subtractive
• Often, mix of additive and subtractive
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Color Vision 49

Color synthesis: a wrong example
Additive Subtractive
red, green, blue  cyan, magenta, yellow

RIGHTWRONG
Color Vision 50

Device Color Models (Subtractive)
• Start with white, remove energy 

(e.g., w/ ink, filters)
• Example: CMY color printer

– Cyan ink absorbs red light
– Magenta ink absorbs green light
– Yellow ink absorbs blue light
– C+M+Y absorbs all light: Black!

• RGB => CMY conversion
• Some digital cameras use CMY

Color Vision 51

CMYK

CMY model plus black ink (K)

Saves ink

Higher-quality black

Increases gamut

Conversion not completely trivial

Color Vision 52

Gamut
• Every device with three primaries can 

produce only colors inside some (approx.) 
triangle
– Convexity!

• This set is called a color gamut
– (Why can’t RGB give all visible colors?)

• Usually, nonlinearities warp the triangle
– Also, gamut varies with luminance

Gamut of printer and CRT visualized in Lab

Color Vision 53

Questions?

Color Vision 54

The infamous gamma curve
• A gamma curve x->xγ

is used for many reasons:
– CRT response
– Color quantization
– Perceptual effect

• Sometimes with γ >1, sometimes γ <1
• These issues are often oversimplified/confused, 

including in prominent textbooks
– i.e. they are explained wrong



10

Color Vision 55

Cathode Ray Tube gamma
• The relationship between voltage and light 

intensity is non linear
• Can be approximated by an exponent 2.5
• Must be inverted to get linear response

From Ponton’s FAQ
http://www.poynton.com/

Color Vision 56

Color quantization gamma
• The human visual system is more sensitive to 

ratios: is a grey twice as bright as another one?
• If we use linear encoding, we have tons of 

information between 128 and 255, but very little 
between 1 and 2!

• This is why a non-linear gamma remapping of 
about 2.0 is applied before encoding

• True also of analog signal to optimize signal-
noise ratio

• It is a nice coincidence that this is exactly the 
inverse of the CRT gamma

Color Vision 57

Stevens effect
• Perceived contrast increases with luminance

Color Vision 58

Perceptual effect
• We perceive colors in darker environment less vivid
• Must be compensated by boosting colors

Color Vision 59

At the end of the day
• At the camera or encoding level, apply a gamma of 

around 1/2.2
• The CRT applies a gamma of 2.5
• The residual exponent 2.2/2.5 boosts the colors to 

compensate for the dark environment

• See
http://www.poynton.com/GammaFAQ.html
http://www.poynton.com/notes/color/GammaFQA.html
http://www.poynton.com/PDFs/Rehabilitation_of_gamma.pdf

Color Vision 60

Gamma is messy
• Because it’s poorly understood
• Because it’s poorly standardized 

– Half of the images on the net are linear, half are 
gamma-compressed

• Because it might make your image processing 
non-linear
– A weighted average of pixel values is not a linear 

convolution! Bad for antialiasing
– But it is often desirable for other image processing, 

because then it corresponds more to human perception 
of brightness
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Color Vision 61

Questions?

Color Vision 62
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