

CIE color matching

- Primaries (synthesis) at 435.8, 546.1 and 700
 For robust reproduction, good separation in red-green
- Measure matching curves as function of wavelength (analysis)
- Note that the primaries (monochromatic 435.8, 546.1 and 700nm) are not the same as the matching curve!!!)

Color Vision

Color Matching Problem

- Some colors cannot be produced using only **positively** weighted primaries
- Solution: add light on the other side!

CIE color matching

- Problem with these curves:
 - Negative values (was a big deal to implement in a measurement hardware)
 No direct notion of
 - brightness
- Hence the definition of a new standard

CIE XYZ

- The most widely recognized color space
- New set of measurement, some linear transformation
- Y corresponds to brightness (1924 CIE standard
- photometric observer)
- No negative value of matching curve
- But no physically-realizable primary (negative values in primary rather than in matching curve)

Color Vision

CIE XYZ

- The most widely recognized color space
- A number of the motivations are historical
- Now we're stuck with it ;-(
- But remember, it is always good to agree on a standard
- Although, well, there are two versions of CIE XYZ (1931 and 1964)
- We'll ignore this!

Color Vision

Color Vision

CIE color space

- Can think of X, Y, Zas coordinates
- Linear transform from typical RGB or LMS
- Always positive (because physical spectrum is positive and matching curves are positives)
- Note that many points in XYZ do not correspond to visible colors!

 $\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 3.24 & -1.54 & -0.50 \\ -0.97 & 1.88 & 0.01 \\ 0.06 & -0.20 & 1.06 \\ 0.21 & 0.72 & 0.07 \\ Z \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.41 & 0.36 & 0.18 \\ 0.21 & 0.72 & 0.07 \\ 0.02 & 0.12 & 0.95 \\ \end{pmatrix} \begin{pmatrix} R \\ B \end{pmatrix}$

Color Vision

Color Vision

Chromaticity diagrams

- 3D space are tough to visualize
- Often cares about chrominance, not luminance

$$x = \frac{X}{X + Y + Z}; \quad y = \frac{Y}{X + Y + Z}; \quad z = \frac{Z}{X + Y + Z};$$

 Perspective projection to plane X+Y+Z=1

Chromaticity diagrams

- Chromaticity diagram:
 normalize against X+ Y+ Z:
 - Normanze against
 Visualize x and y
 - -z easy to deduce: z=1-x-y
- To get full color,
- usually specify x, y and Y – because Y is brightness
- -X = xY/y; Z = (1.0-x-y) Y/y
- Why not normalize against Y? – Not clear!

Pure wavelength in chromaticity diagram. a Blue: big value of Z, therefore x and y small $\int_{0}^{0} \int_{0}^{0} \int_{$

XYZ vs. RGB• Linear transform• XYZ is rarely used for storage• There are tons of flavors of RGB- sRGB, Adobe RGB- Different matrices!• XYZ is nore standardized• XYZ is not realizable physically !!- What happens if you go "off" the diagram- In fact, the orthogonal (synthesis) basis of XYZ requires negative values.

In summary

- It's all about linear algebra
 - Projection from infinite-dimensional spectrum to a 3D response
 - Then any space based on color matching and metamerism can be converted by 3x3 matrix
- Complicated because
 - Projection from infinite-dimensional space
 - Non-orthogonal basis (cone responses overlap)
 - No negative light

Color Vision

4

Hue Saturation Value

- Value: from black to white
- Hue: dominant color (red, orange, etc)
- Saturation: from gray to vivid color
- HSV double cone

Hue Saturation Value

- One interpretation in spectrum space
- Not the only one because of metamerism
- Dominant wavelength (hue)
- Intensity
- Purity (saturation)

CIE color space • Hue, saturation and 520 value of a color A 0.8 540 0.7 • Use white point C 560 0.6 • Hue: project A onto 0.5 500 spectrum curve 0.4 • Saturation: ~ distance 0.3 from C 0.2 180 0.1 • Value: Y 400 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Perceptual color difference

- In color space CIE-XYZ, the perceived distance between colors is not equal everywhere
- Can be represented by ellipses of perceived differences (set of colors that look no more different than a given threshold)
- Measured by MacAdam
- Same for all linear color spaces (RBG, LMS, etc.)

Color Visior

JPEG Compression

- Perform DCT to work in frequency space - Local DCT, 8x8 blocks
- Use CSF for quantization (more bits for sensitivity with more contrast)
- Other usual coding tricks

Cathode Ray Tube gamma

- The relationship between voltage and light intensity is non linear
- Can be approximated by an exponent 2.5
- Must be inverted to get linear response

Color quantization gamma

- The human visual system is more sensitive to ratios: is a grey twice as bright as another one?
- If we use linear encoding, we have tons of information between 128 and 255, but very little between 1 and 2!
- This is why a non-linear gamma remapping of about 2.0 is applied before encoding
- True also of analog signal to optimize signalnoise ratio
- It is a nice coincidence that this is exactly the inverse of the CRT gamma

Color Vision

At the end of the day

- At the camera or encoding level, apply a gamma of around 1/2.2
- The CRT applies a gamma of 2.5
- The residual exponent 2.2/2.5 boosts the colors to compensate for the dark environment
- See

Color Vision

http://www.poynton.com/GammaFAQ.html http://www.poynton.com/notes/color/GammaFQA.html http://www.poynton.com/PDFs/Rehabilitation_of_gamma.pdf

Gamma is messy

- Because it's poorly understood
- Because it's poorly standardized
 - Half of the images on the net are linear, half are gamma-compressed
- Because it might make your image processing non-linear
 - A weighted average of pixel values is not a linear convolution! Bad for antialiasing
 - But it is often desirable for other image processing, because then it corresponds more to human perception of brightness

Color Vision

Selected Bibliography

Vision Science by Stephen E. Palmer MIT Press; ISBN: 0262161834 760 pages (May 7, 1999)

Billmeyer and Saltzman's Principles of Color Technology, 3rd Edition by Roy S. Berns, Fred W. Billmeyer, Max Saltzman Wiley-Interscience: ISBN: 047119459X 304 pages 3 edition (March 31, 2000)

62

Vision and Art : The Biology of Seeing by Margaret Livingstone, David H. Hubel Harry N Abrams; ISBN: 0810904063 208 pages (May 2002)

<section-header><section-header><section-header><section-header><section-header><image><image><text><text><text>