

## Admin

- Final project due this Friday
- If you aren't well advanced yet, time to freak out
- Don't forget the final report (~1000 words)
- Submit code, executable, instructions (we want to copy-paste command lines)

Color Vision
3
Color Vision

## Industrial-strength ray tracer

- Usually, one single primitive (triangles)
- Heavily optimize ray-triangle and spatial data structure (recursive grid or kd-tree)
- Watch memory footprint
- Pluggable shaders (same as your shader class)
- High-quality supersampling (same as you)
- Distribution ray-tracing (soft shadows, glossy, DoF)
- Global illumination (Irradiance caching, photon maps, but only recently used)
- Texture mapping, bump mapping
- Fancy light sources (shaders as well)
- Volumetric effects (fog, dust)
- Data management (although not always done well)

Color Vision
6

## Today: color

Disclaimer:

- Color is both quite simple and quite complex
- There are two options to teach color: - pretend it all makes sense and it's all simple
- Expose the complexity and arbitrary choices
- Unfortunately I have chosen the latter
- Too bad if you believe ignorance is bliss




## Plan

- What is color
- Cones and spectral response
- Color blindness and metamers
- Fundamental difficulty with colors
- Colorimetry and color spaces
- Next time:

More perception
Gamma

## Cone spectral sensitivity

- Short, Medium and Long wavelength
- Response $=\int_{\text {wavelenghh }} \operatorname{stimulus}(\lambda) *$ response $(\lambda) \mathrm{d} \lambda$



## Cones do not "see" colors

- Different wavelength, different intensity
- Same response


Color Vision


## Plan

- What is color
- Cones and spectral response
- Color blindness and metamers
- Fundamental difficulty with colors
- Colorimetry and color spaces
- Next time: More perception Gamma


## Response comparison

- Different wavelength, different intensity
- But different response for different cones


Color Vision


## Color blindness

- Classical case: 1 type of cone is missing (e.g. red)
- Now Project onto lower-dim space (2D)
- Makes it impossible to distinguish some spectra




## Color blindness - more general

- Dalton
- $8 \%$ male, $0.6 \%$ female
- Genetic
- Dichromate (2\% male)
- One type of cone missing
- L (protanope), M (deuteranope), S (tritanope)
- Anomalous trichromat
- Shifted sensitivity

Color Vision


## Color blindness test

- Maze in subtle intensity contrast
- Visible only to color blinds
- Color contrast overrides intensity otherwise


Color Vision


## Metamers

- We are all color blind!
- Different spectrum
- Same response
- Essentially, we have projected from an infinite-dimensional spectrum to a 3D space: we loose information

(a)

Wivrlength ( nm )


Metamerism \& light source

- Metamers under a given light source
- May not be metamers under a different lamp




## Playtime: Prokudin-Gorskii

- Digital restoration

http://www.loc.gov/exhibits/empire/
Color Vision
33



## Plan

- What is color
- Cones and spectral response
- Color blindness and metamers
- Fundamental difficulty with colors
- Colorimetry and color spaces
- Next time:

More perception
Gamma

## Synthesis

- Take a given stimulus and the corresponding responses s, m, l(here 0.5, 0, 0)


Color Vision


## What's going on?

- The three cone responses are not orthogonal
- i.e. they overlap and "pollute" each other



## Questions?

## Standard color spaces

- We need a principled color space
- Many possible definition
- Including cone response (LMS)
- Unfortunately not really used
- The good news is that color vision is linear and 3-dimensional, so any color space based on color matching can be obtained using 3x3 matrix
- But there are non-linear color spaces (e.g. Hue Saturation Value, Lab)
Color Vision


## CIE

- First in charge of measuring brightness for different light chromaticities
- Predict brightness of arbitrary spectrum (linearity)


Photornetric quartitios are calculated by multiplying the stimulus, $\Phi_{2}$, and the standard photopic observer, $V_{1}$ wavelength by wevelength, to give the curve ( $\$ V$ V), The area under this curve, suitably normalized, is the photometric quantity. Photomotric quantities include luminance., iluminance, luminous rotectance, luminous transmittance, and luminance foctor, rated. The most cornmon, luminance, illuminance, and fuminance tactoc, are detned further in this chapter. Photometric calculations are similar to tristimulus calculations, described in detail on pages $56-59$.

| Questions? |
| :--- |
|  |
|  |
|  |
|  |
|  |
|  |
| Colorvision |

