

Final Projects I

- Do the user interface (if any) last
- Avoid adding lots of new scene file parsing
- Don't expect to understand all the details from some research paper before you start coding
- It's ok to do a simplified implementation (just discuss the limitations in your report)
- Normal lab hours next week
- Additional office hours (just send email!)

Final Projects II

- CSG folks
\rightarrow get it to work in your raytracer first
\rightarrow pre-visualization second
- Rigid Body folks
\rightarrow take baby steps from PS \#9
- Distributed Ray Tracing folks
\rightarrow looks good
- Have Fun!

Today

- More Dynamics
- Rigid Body
- Fracture
- Deformation
- Forward \& Inverse Kinematics
- Interpolation of Rotations
- Euler Angles
- Quaternions

MIT EECS 6.837, Durand and Cutler

Rigid Body Dynamics

- Could use particles for all points on the object
- But rigid body does not deform
- Few degrees of freedom
- Use only one particle at the center of mass
- Compute Net Force \& Net Torque

Rigid Body Dynamics

- Physics
- Velocity
- Acceleration
- Angular Momentum
- Collisions
- Friction

from: Darren Lewis http://www.stanford.edu/~dalewis/cs448a/rigidbody.html

MIT EECS 6.837, Durand and Cutler

Collisions

Victor J. Milenkovic \& Harald Schmid Optimization-Based Animation SIGGRAPH 2001

- We know how to simulate bouncing really well
- But resting collisions are hard to manage

Collisions

Robert Bridson, Ronald Fedkiw \& John Anderson Robust Treatment of Collisions, Contact and Friction for Cloth Animation

- Cloth has many points of contact
- Efficient collision detection
- Stable numerical treatment
 SIGGRAPH 2002

Cloth

 David Baraff \& Andrew Witkin Large Steps in Cloth Simulation- Dynamic motion driven by animation
 SIGGRAPH 1998

Finite Element Method

- To solve the continuous problem (deformation of all points of the object)
- Discretize the problem
- Express the interrelationship
- Solve a big linear system
- More principled than Mass-Spring

Fracture

James O'Brien \& Jessica Hodgins Graphical Modeling and Animation of Brittle Fracture SIGGRAPH 1999

- Fracture threshhold
- Remeshing
- Material properties
- need connectivity info!
- Parameter tuning

MIT EECS 6.837, Durand and Cutler

"Half-Edge" Connectivity Data Structure

- For efficiently finding adjacent elements
- Each oriented half edge points to:
- the oppositelyoriented half edge
- the next vertex
- the next half edge
- the polygonal face
- Many variations...

Diagram from Justin Legakis

Fluid Simulation

- Discretize volume of fluid
- Exchanges and velocity at voxel boundary
- Write Navier Stokes equations
- Incompressible, etc.
- Numerical integration
- Finite elements, finite differences
- Challenges:

[^0]

MIT EECS 6.837, Durand and Cutler

Questions?

Articulated Models

- Articulated models:
- rigid parts
- connected by joints
- They can be animated by specifying the joint angles as functions of time.

MIT EECS 6.837, Durand and Cutler

Forward Kinematics

- Given skeleton parameters p, and the position of the effecter in local coordinates V_{s}, what is the position of the effector in the world coordinates V_{w} ?

$$
\mathrm{V}_{\mathrm{w}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{h}}, \mathrm{y}_{\mathrm{h}}, \mathrm{z}_{\mathrm{h}}\right) \mathrm{R}\left(\mathrm{q}_{\mathrm{h}}, \mathrm{f}_{\mathrm{h}}, \mathrm{~s}_{\mathrm{h}}\right) \mathrm{T}_{\mathrm{h}} \mathrm{R}\left(\mathrm{q}_{\mathrm{t}}, \mathrm{f}_{\mathrm{t}}, \mathrm{~s}_{\mathrm{t}}\right) \mathrm{T}_{\mathrm{t}} \mathrm{R}\left(\mathrm{Q}_{\mathrm{c}}\right) \mathrm{T}_{\mathrm{c}} \mathrm{R}\left(\mathrm{q}_{\mathrm{f}}, \mathrm{f}_{\mathrm{f}}\right) \mathrm{V}_{\mathrm{s}}
$$

$$
\mathrm{V}_{\mathrm{w}}=\mathrm{S}(\mathrm{p}) \mathrm{V}_{\mathrm{s}}
$$

Today

- More Dynamics
- Rigid Body
- Fracture
- Deformation
- Forward \& Inverse

Kinematics

- Interpolation of Rotations
- Euler Angles
- Quaternions

Skeleton Hierarchy

- Each bone transformation

Inverse Kinematics (IK)

- Given the position of the effecter in local coordinates V_{s} and the desired position V_{w} in world coordinates, what are the skeleton parameters p ?
- Much harder requires solving the inverse of the non-linear function:

$$
\text { find } \mathrm{p} \text { s.t. } \mathrm{S}(\mathrm{p}) \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{w}}
$$

- Underdetermined problem with many solutions

Real IK Problem

- Find a "natural" skeleton configuration for a given collection of pose constraints
- A scalar objective function $g(p)$ measures the quality of a pose, $g(p)$ is minimum for most natural poses
- Example $g(p)$: deviation from natural pose, joint stiffness, power consumption, etc...
- A vector constraint function $C(p)=0$ collects all pose constraints:

Kinematics vs. Dynamics

- Kinematics
- Describes the positions of body parts as a function of skeleton parameters.
- Dynamics
- Describes the positions of body parts as a function of applied forces.

Questions?

Today

- More Dynamics
- Rigid Body
- Fracture
- Deformation
- Forward \& Inverse

Kinematics

- Interpolation of Rotations
- Euler Angles
- Quaternions

MIT EECS 6.837, Durand and Cutler

Interpolating Orientations in 3-D

- Rotation matrices
- Given rotation matrices M_{i} and time t_{i}, find $M(t)$ such that $M\left(t_{i}\right)=M_{i}$

MIT EECS 6.837, Durand and Cutler

3D Rotations

- How many degrees of freedom for 3D orientations?
- 3 degrees of freedom:
- direction of rotation and angle
- or 3 Euler Angles

MIT EECS 6.837, Durand and Cutler

Flawed Solution

- Interpolate each entry independently
- Example: M_{0} is identity and M_{1} is 90° around x -axis
Interpolate $\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5\end{array}\right]$
- Is the result a rotation matrix?

No, it does not preserve rigidity (angles and lengths)

Euler Angles

- An Euler angle is a rotation about a single axis.
- Any orientation can be described by composing three rotations, one around each coordinate axis.
- Roll, pitch and yaw (perfect for flight simulation)

Gimbal Lock

- Two or more axis align resulting in a loss of rotation degrees of freedom.

Euler Angles in the Real World

- Apollo inertial measurement unit
- To "prevent" lock, they added a fourth Gimbal!

Today

- More Dynamics
- Rigid Body
- Fracture
- Deformation
- Forward \& Inverse Kinematics
- Interpolation of Rotations
- Euler Angles
- Quaternions

MIT EECS 6.837, Durand and Cutler

1D Sphere and Complex Plane

- Interpolate orientation in 2D
- 1 angle
- But messy because modulo 2π
- Use interpolation in (complex) 2D plane
- Orientation = complex
 argument of the number

Questions?

Solution: Quaternion Interpolation

- Interpolate orientation on the unit sphere
- By analogy: 1-, 2-, 3-DOF rotations as constrained points on 1, 2, 3-spheres

Velocity Issue: lerp vs. slerp

- Linear Interpolation (lerp) interpolates the straight line between the two orientations
\rightarrow lerp motion does not have uniform velocity:

$$
\operatorname{lerp}\left(\mathbf{q}_{0}, \mathbf{q}_{1}, t\right)=\mathbf{q}(t)=\mathbf{q}_{0}(1-t)+\mathbf{q}_{1} t
$$

- Spherical Linear Interpolation (slerp) interpolates along the arc lines by adding a sine term:

$$
\operatorname{slerp}\left(\mathbf{q}_{0}, \mathbf{q}_{1}, t\right)=\mathbf{q}(t)=\frac{\mathbf{q}_{0} \sin ((1-t) \omega)+\mathbf{q}_{1} \sin (t \omega)}{\sin (\omega)}
$$

2-Angle Orientation

- Embed 2-sphere in 3D
- 2 angles
- Messy because modulo 2π and pole
- Use linear interpolation in 3D space

- Orientation $=$ projection onto the sphere
- Use slerp for velocity correction

Quaternions

- Due to Hamilton (1843)
- Can be defined like complex numbers
$-a+b i+c j+d k$
- Multiplication rules
$-\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1$
$-\mathrm{ij}=\mathrm{k}=-\mathrm{ji}$
$-\mathrm{jk}=\mathrm{i}=-\mathrm{kj}$
$-\mathrm{ki}=\mathrm{j}=-\mathrm{ik}$
- ...

Quaternion Interpolation

- Higher-order interpolations must stay on sphere
- See Shoemake, SIGGRAPH '85 for:
- Matrix equivalent of composition
- Details of higher-order interpolation
- More of underlying theory
- Problems
- No favored direction (e.g. up for camera)
- Needs more key points to specify multiple rotations

3 Angles - Quaternions!

- Use the same principle
- interpolate in higher-dimensional space
- Project back to unit sphere
- Probably need the 3 -sphere embedded in 4D
- More complex, harder to visualize

MIT EECS 6.837, Durand and Cutler

Quaternion Principles

- A quaternion
= point on unit 3-sphere in 4D
= orientation
- We can apply it to a point, to a vector, to a ray
- We can convert it to a matrix
- How do we interpolate?
- How do we project?

Quaternions

- Quaternions are unit vectors on 3-sphere (in 4D)
- Right-hand rotation of q radians about v : $\mathrm{q}=\{\cos (\mathrm{q} / 2) ; \mathrm{v} \sin (\mathrm{q} / 2)\}, \rightarrow$ often noted (s, v)
- What if we use -v ?
$-(\mathrm{s}, \mathrm{v})=(-\mathrm{s},-\mathrm{v}) \quad \rightarrow$ a rotation of -q around -v
- What is the quaternion of Identity rotation? $-\mathrm{q}_{\mathrm{I}}=\{1,0,0,0\}$

- Is there exactly one quaternion per rotation?
- No, $\mathrm{q}=\{\cos (\mathrm{q} / 2) ; \mathrm{v} \sin (\mathrm{q} / 2)\}$ is the same rotation as $-\mathrm{q}=\{\cos ((\mathrm{q}+2 \pi) / 2) ; \mathrm{v} \sin ((\mathrm{q}+2 \pi) / 2)\}$
- Antipodal on the quaternion sphere
- What is the inverse of quaternion $\mathrm{q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$?

$$
-q^{-1}=\{a,-b,-c,-d\}
$$

Quaternion Algebra I

- Special rule for quaternion multiplication (composition)
$\mathrm{q}_{1} \mathrm{q}_{2}=\left\{\mathrm{s}_{1} \mathrm{~s}_{2}-\mathrm{v}_{1} \cdot \mathrm{v}_{2} ; \mathrm{s}_{1} \mathrm{v}_{2}+\mathrm{s}_{2} \mathrm{v}_{1}+\mathrm{v}_{1} \times \mathrm{v}_{2}\right\}$
- Sanity check: a radians around v * b radians around v
$-\{\cos (\mathrm{a} / 2) ; \mathrm{v} \sin (\mathrm{a} / 2)\}^{*}\{\cos (\mathrm{~b} / 2) ; \mathrm{v} \sin (\mathrm{b} / 2)\}$
$-\{\cos (\mathrm{a} / 2) \cos (\mathrm{b} / 2)-\sin (\mathrm{a} / 2) \mathrm{v} \cdot \sin (\mathrm{b} / 2) \mathrm{v}$; $\cos (\mathrm{b} / 2) \sin (\mathrm{a} / 2) \mathrm{v}+\cos (\mathrm{a} / 2) \sin (\mathrm{b} / 2) \mathrm{v}+\mathrm{v} \times \mathrm{v}\}$
$-\{\cos (\mathrm{a} / 2) \cos (\mathrm{b} / 2)-\sin (\mathrm{a} / 2) \sin (\mathrm{b} / 2)$;
$\mathrm{v}[\cos (\mathrm{b} / 2) \sin (\mathrm{a} / 2)+\cos (\mathrm{a} / 2) \sin (\mathrm{b} / 2)]\}$
$\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\cos (\mathrm{x}+\mathrm{y})=\cos \mathrm{x} \cos \mathrm{y}-\sin \mathrm{x} \sin \mathrm{y}$
$-\{\cos ((\mathrm{a}+\mathrm{b}) / 2) ; \mathrm{v} \sin ((\mathrm{a}+\mathrm{b}) / 2)\} \quad(\mathrm{a}+\mathrm{b})$ radians around v

Questions?

- Julia Sets in Quaternion space
- http://aleph0.clarku.edu/~djoyce/julia/explorer.html
- Pascal Massimino http://skal.planet-d.net/
- http://www.chaospro.de/gallery/gallery.php?cat=Anim

Quaternion Algebra II

- To rotate 3D point/vector p by q , compute:

$$
\mathrm{q}\{0 ; \mathrm{p}\} \mathrm{q}^{-1}
$$

Example: $\quad \mathrm{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$q=\{\cos (q / 2), 0,0, \sin (q / 2)\}=\{c, 0,0, s\}$ $q^{-1}=\{\cos (q / 2), 0,0,-\sin (q / 2)\}=\{c, 0,0,-s\}$
$\mathrm{q}\{0 ; \mathrm{p}\} \mathrm{q}^{-1}=\{\mathrm{c}, 0,0, \mathrm{~s}\}\{0, \mathrm{x}, \mathrm{y}, \mathrm{z}\}\{\mathrm{c}, 0,0,-\mathrm{s}\}$
$=\left\{\mathrm{c}^{*} 0-\mathrm{zs} ; \mathbf{c p}+0(0,0, \mathrm{~s})+(0,0, \mathrm{~s}) \times \mathbf{p}\right\}\{\mathrm{c}, 0,0,-\mathrm{s}\}$
$=\{-\mathrm{zs} ; \mathrm{cp}+(-\mathrm{sy}, \mathrm{sx}, 0)\}\{\mathrm{c}, 0,0,-\mathrm{s}\}$
$=\left\{\begin{aligned}= & \{-\mathrm{zsc}-(\mathrm{cp}+(-\mathrm{sy}, \mathrm{sx}, 0)) \cdot(0,0,-\mathrm{s}) \\ & -\mathrm{zs}(0,0,-\mathrm{s})+\mathrm{c}(\mathrm{cp}+(-\mathrm{sy}, \mathrm{sx}, 0))\end{aligned}\right.$
$-\mathrm{zs}(0,0,-\mathrm{s})+\mathrm{c}(\mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0))+(\mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0)) \times(0,0,-\mathrm{s})\}$
$=\left\{0,\left(0,0, \mathrm{zs}^{2}\right)+\mathrm{c}^{2} \mathbf{p}+(-\operatorname{csy}, \operatorname{csx}, 0)+(-\operatorname{csy}, \operatorname{csx}, 0)+\left(\mathrm{s}^{2} \mathrm{x}, \mathrm{s}^{2} \mathrm{y}, 0\right)\right\}$
$=\left\{0,\left(\mathrm{c}^{2} \mathrm{x}-2 \operatorname{csy}-\mathrm{s}^{2} \mathrm{x}, \mathrm{c}^{2} \mathrm{y}+2 \operatorname{cs} \mathrm{x}-\mathrm{s}^{2} \mathrm{y}, \mathrm{zs}^{2}+\mathrm{sc}^{2}\right)\right\}$
$=\{0, x \cos (q / 2)-y \sin (q / 2), x \sin (q / 2)+y \cos (q / 2), z\}$

Next Week: Color!

[^0]: - Robust integration, stability
 - Speed
 - Realistic surface

