Global Illumination: Radiosity

Schedule

- Review Session: Monday Oct. 25, 7:30 - 9 pm, Room 1-150 bring lots of questions!
- Quiz 2: Tuesday October 26th, in class 80 minutes, closed books, 1 page of notes allowed
- No assignment due next week
- Ray tracing acceleration due Nov 3

MIT EECS 6.837, Durand and Cutler

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

MIT EECS 6.837, Durand and Cutler

Rendering Recap

- Ray-tracing
 - For each pixel, for each object
- Graphics pipeline, scan conversion – For each object, for each pixel
- Local lighting models
 - Diffuse, Phong
- Shadows
- Ray casting, shadow maps, shadow volumes
- Reflection, refraction

MIT EECS 6.837, Durand and Cutler

Why global illumination?

- Simulate all light inter-reflections (indirect lighting)
 - e.g. in a room, a lot of the light is indirect: it is reflected by walls.
- How have we dealt with this so far?
 Ambient term to fake some uniform indirect light

The Cornell Box

• Careful calibration and measurement allows for comparison between physical scene & simulation

Today

- · Why Radiosity
 - The Cornell Box
 - Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- · Advanced Radiosity

Today

- Why Radiosity
 - The Cornell BoxRadiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

MIT EECS 6.837, Durand and Cutler

Radiosity Patches are Finite Elements

- We are trying to solve an the rendering equation over the *infinite-dimensional* space of radiosity functions over the scene.
- We project the problem onto a *finite basis* of functions: piecewise constant over patches
- See you all this Spring for 6.839!

Progressive Refinement w/out Ambient Term

Today

- Why Radiosity
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity
 - Other Basis Functions

MIT EECS 6.837, Durand and Cutler

Increasing the Accuracy of the Solution

- The quality of the image is a function of the size of the patches.
- The patches should be *adaptively subdivided* near shadow boundaries, and other areas with a high radiosity gradient.
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance.

Hierarchical Approach

- Group elements when the light exchange is not important - Breaks the quadratic complexity
 - Control non trivial, memory cost

Radiosity today

- Used in architectural simulation (Lightscape software)
- Used for game lighting preprocessing (light maps)
- Not as hot a research topic
 - Monte Garlo Ray- tracing is hotter (more general)
 - But "pre computed radiance transfer" is very close: idea of projecting onto simpler basis functions (used e.g. in Max Payne 2)

MIT EECS 6.837, Durand and Cutler

Practical problems with radiosity

- Meshing (memory, robustness)
- Form factors (computation)
- Diffuse limitation (extension to specular takes too much memory)
- Fast extensions (hierarchical) can be hard to control

