Real-Time Shadows

Textures can Alias

- **Aliasing** is the under-sampling of a signal, and it's especially noticeable during animation

Textures can Alias

Schedule

- Quiz 1: Tuesday October 26th, in class (1 week from today!)
- Review Session: Monday October 25th, 7:30-9pm, 1-150
- Assignment 6: due Wednesday November 3rd

RayTracer::traceRay confusion

This will help you implement and debug fast raytracing (assignment 6)

Questions?
Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Why are Shadows Important?

- Depth cue
- Scene Lighting
- Realism
- Contact points

Shadows as a Depth Cue

For Intuition about Scene Lighting

- Position of the light (e.g. sundial)
- Hard shadows vs. soft shadows
- Colored lights
- Directional light vs. point light

Shadows as the Origin of Painting

Shadows and Art

- Only in Western pictures (here Caravaggio)
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Shadows

• One shadow ray per intersection per point light source

Soft Shadows

• Caused by extended light sources
• Umbra
 – source completely occluded
• Penumbra
 – Source partially occluded
• Fully lit

Soft Shadows

• Multiple shadow rays to sample area light source

Shadows in Ray Tracing

• Shoot ray from visible point to light source
• If blocked, discard light contribution
• Optimizations?
 – Stop after first intersection (don’t worry about tmin)
 – Coherence: remember the previous occluder, and test that object first

Traditional Ray Tracing
Ray Tracing + Soft Shadows

Questions?

Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
 – Shadow View Duality
 – Texture Mapping
• Shadow Maps
• Shadow Volumes

Cast Shadows on Planar Surfaces

• Draw the object primitives a second time, projected to the ground plane

Limitations of Planar Shadows

• Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.

Shadow/View Duality

• A point is lit if it is visible from the light source

• Shadow computation similar to view computation
Texture Mapping

• Don't have to represent everything with geometry

Fake Shadows using Projective Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver

Image from light source	BW image of obstacle	Final image

Figure from Moller & Haines "Real Time Rendering"

Projective Texture Shadow Limitations

• Must specify occluder & receiver
• No self-shadows
• Resolution

Questions?

Plate 52 Grandville, The Shadows (The French Café) from La Caricature, 1830.

Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Shadow Maps

• In Renderman
 – (High-end production software)
Shadow Mapping

- Texture mapping with depth information
- Requires 2 passes through the pipeline:
 - Compute shadow map (depth from light source)
 - Render final image, check shadow map to see if points are in shadow

Shadow Map Look Up

- We have a 3D point \((x,y,z)_{WS}\)
- How do we look up the depth from the shadow map?
 - Use the 4x4 perspective projection matrix from the light source to get \((x',y',z')_{LS}\)
 - \(\text{ShadowMap}(x',y') < z'\)?

Limitations of Shadow Maps

1. Field of View
2. Bias (Epsilon)
3. Aliasing

1. Field of View Problem

- What if point to shadow is outside field of view of shadow map?
 - Use cubical shadow map
 - Use only spot lights!

2. The Bias (Epsilon) Nightmare

- For a point visible from the light source \(\text{ShadowMap}(x',y') = z'\)
- How can we avoid erroneous self-shadowing?
 - Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps

\(\text{ShadowMap}(x',y') + \text{bias} < z'\)

Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias
3. Shadow Map Aliasing

- Under-sampling of the shadow map
- Reprojection aliasing – especially bad when the camera & light are opposite each other

3. Shadow Map Filtering

- Should we filter the depth?
 (weighted average of neighboring depth values)
- No... filtering depth is not meaningful

3. Percentage Closer Filtering

- Instead filter the result of the test
 (weighted average of comparison results)
- But makes the bias issue more tricky

3. Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky

Projective Texturing + Shadow Map

Shadows in Production

- Often use shadow maps
- Ray casting as fallback in case of robustness issues

Images from Cass Everett et al., “Hardware Shadow Mapping” NVIDIA SDK White Paper

Figure 12: Sample Transform Map

Figure 13: Various Shadow Maps

MIT EECS 6.837, Durand and Cutler
Hardware Shadow Maps

- Can be done with hardware texture mapping
 - Texture coordinates u,v,w generated using 4x4 matrix
 - Modern hardware permits tests on texture values

Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes
 - The Stencil Buffer

Stencil Buffer

- Tag pixels in one rendering pass to control their update in subsequent rendering passes
 - "For all pixels in the frame buffer" → "For all tagged pixels in the frame buffer"
- Can specify different rendering operations for each case:
 - stencil test fails
 - stencil test passes & depth test fails
 - stencil test passes & depth test passes

Stencil Buffer – Real-time Mirror

- Clear frame, depth & stencil buffers
- Draw all non-mirror geometry to frame & depth buffers
- Draw mirror to stencil buffer, where depth buffer passes
- Set depth to infinity, where stencil buffer passes
- Draw reflected geometry to frame & depth buffer, where stencil buffer passes

See NVIDIA’s stencil buffer tutorial http://developer.nvidia.com
also discusses blending, multiple mirrors, objects behind mirror, etc…

Questions?

Shadow Volumes

- Explicitly represent the volume of space in shadow
- For each polygon
 - Pyramid with point light as apex
 - Include polygon to cap
- Shadow test similar to clipping
Shadow Volumes

- If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light.
- Cost of naive implementation: \(\#\text{polygons} \times \#\text{lights} \)

Shadow Volumes

- Shoot a ray from the eye to the visible point.
- Increment/decrement a counter each time we intersect a shadow volume polygon *(check z buffer)*.
- If the counter \(\neq 0 \), the point is in shadow.

Shadow Volumes w/ the Stencil Buffer

1. Initialize stencil buffer to 0.
2. Draw scene with ambient light only.
3. Turn off frame buffer & z-buffer updates.
4. Draw front-facing shadow polygons:
 - If z-pass \(\to \) increment counter.
5. Draw back-facing shadow polygons:
 - If z-pass \(\to \) decrement counter.
6. Turn on frame buffer updates.
7. Turn on lighting and redraw pixels with counter = 0.

If the Eye is in Shadow...

- \(\ldots \) then a counter of 0 does not necessarily mean lit.

3 Possible Solutions:

1. Explicitly test eye point with respect to all shadow volumes.
2. Clip the shadow volumes to the view frustum.
3. "Z-Fail" shadow volumes.

1. Test Eye with Respect to Volumes

- Adjust initial counter value.

Expensive

2. Clip the Shadow Volumes

- Clip the shadow volumes to the view frustum and include these new polygons.

Messy CSG
3. "Z-Fail" Shadow Volumes

Start at infinity

... Draw front-facing shadow polygons
 If z-fail, decrement counter
 Draw back-facing shadow polygons
 If z-fail, increment counter

... Optimizing Shadow Volumes

- Use silhouette edges only (edge where a back-facing & front-facing polygon meet)

Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
 - for a really complex scene/object, the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap

Questions?

- From last year’s quiz: Check the boxes to indicate the features & limitations of each technique

<table>
<thead>
<tr>
<th>Features / Limitations</th>
<th>Plane Shadows</th>
<th>Perspective Shadows</th>
<th>Shadow Maps</th>
<th>Shadow Volumes</th>
<th>Ray Casting Shadows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows objects to cast shadows on themselves (self-shadows)</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits shadows on arbitrary surfaces (i.e., curved)</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renders geometry from the viewpoint of the light</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generates extra geometric primitives</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Limited resolution of intermediate representation can result in jaggy shadow artifacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>

Next Time:

Global Illumination: Radiosity & The Rendering Equation