

Schedule

- Quiz 1: Tuesday October 26th, in class (1 week from today!)
- Review Session: Monday October 25th, 7:30-9pm, 1-150
- Assignment 6: due Wednesday November 3rd

MIT EECS 6.837, Durand and Cutler

For Intuition about Scene Lighting Position of the light (e.g. sundial) Hard shadows vs. soft shadows Colored lights Directional light vs. point light

Questions?

Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Projective Texture Shadows
 - Shadow View Duality
 - Texture Mapping
- Shadow Maps
- Shadow Volumes

Limitations of Planar Shadows

• Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.

Texture Mapping

Fake Shadows using Projective Textures

- Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

Figure from Moller & Haines "Real Time Rendering MIT EECS 6.837, Durand and Cutler

Projective Texture Shadow Limitations

- Must specify occluder & receiver
- No self-shadows
- Resolution

Figure from Moller & Haines "Real Time Rendering MIT EECS 6.837, Durand and Cutler

Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- · Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Shadow Maps

- In Renderman
 - (High-end production software)

MIT EECS 6.837, Durand and Cutler

3. Shadow Map Aliasing

- Under-sampling of the shadow map
- Reprojection aliasing especially bad when the camera & light are opposite each other

MIT EECS 6.837, Durand and Cutler

3. Shadow Map Filtering

- Should we filter the depth? (weighted average of neighboring depth values)
- No... filtering depth is not meaningful

3. Percentage Closer Filtering Instead filter the result of the test (weighted average of comparison results) But makes the bias issue more tricky

Sample Transform Step

0

50.1 1.2 1.1

1.3 1.4 1.2

Today

- Why are Shadows Important?
- · Shadows & Soft Shadows in Ray Tracing
- · Planar Shadows
- · Projective Texture Shadows
- Shadow Maps
- Shadow Volumes - The Stencil Buffer

Stencil Buffer – Real-time Mirror · Clear frame, depth & stencil buffers · Draw all non-mirror geometry to frame & depth buffers Draw mirror to stencil buffer, where depth buffer passes Set depth to infinity, where stencil buffer passes Draw reflected geometry to frame & depth buffer, where stencil buffer passes See NVIDIA's stencil buffer tutorial

http://developer.nvidia.com also discusses blending, multiple mirrors, objects behind mirror, etc

Limitations of Shadow Volumes

- · Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
 for a really complex scene/object, the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap

MIT EECS 6.837, Durand and Cutler

Questions? • From last year's quiz: Check the boxes to indicate the features & limitations of each technique					
Allows objects to cast shadows on themselves (self shadowing)					
Permits shadows on arbitrary surfaces (i.e. curved)					
Renders geometry from the viewpoint of the light					
Generates extra geometric primitives					
Limited resolution of intermediate representation can result in jaggie shadow artifacts					
MIT EI	CS 6.837, Du	rand and Cutler	-		

