Last time?
- Point and segment Clipping
- Planes as homogenous vectors (duality)
- In homogeneous coordinates before division
- Outcodes for efficient rejection
- Notion of convexity
- Polygon clipping via walking
- Line rasterization, incremental computation

High-level concepts for 6.837
- Linearity
- Homogeneous coordinates
- Convexity
- Discrete vs. continuous
- Incremental computation
- Trying things on simple examples

Scan Conversion (Rasterization)
- Rasterizes objects into pixels
- Interpolate values as we go (color, depth, etc.)

Visibility / Display
- Each pixel remembers the closest object (depth buffer)
- Almost every step in the graphics pipeline involves a change of coordinate system. Transformations are central to understanding 3D computer graphics.

Today
- Line scan-conversion
- Polygon scan conversion
 - smart
 - back to brute force
- Visibility
Scan Converting 2D Line Segments

- **Given:**
 - Segment endpoints (integers $x_1, y_1; x_2, y_2$)
- **Identify:**
 - Set of pixels (x, y) to display for segment

Line Rasterization Requirements

- Transform **continuous** primitive into **discrete** samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

Algorithm Design Choices

- **Assume:**
 - $m = \frac{dy}{dx}, \ 0 < m < 1$
- Exactly one pixel per column
 - fewer \rightarrow disconnected, more \rightarrow too thick

Naive Line Rasterization Algorithm

- Simply compute y as a function of x
 - Conceptually: move vertical scan line from x_1 to x_2
 - What is the expression of y as function of x?
 - Set pixel $(x, \text{round}(y(x)))$

Efficiency

- Computing y value is expensive
 - $y = y_1 + m(x - x_1)$
- Observe: $y \doteq m$ at each x step ($m = \frac{dy}{dx}$)

Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment
 - intuitive, efficient,
 - pixel center always within 0.5 vertically
- Same answer as naive approach
Bresenham's Algorithm (DDA)

• Observation:
 – If we’re at pixel P \((x_p, y_p)\), the next pixel must be either \((x_{p+1}, y_p)\) or \((x_{p+1}, y_{p+1})\)
 – Why?

Bresenham Step

• Which pixel to choose: E or NE?
 – Choose E if segment passes below or through middle point M
 – Choose NE if segment passes above M

Bresenham's Algorithm (DDA)

• Decision Function:
 \(D(x, y) = y - mx - b\)
 – positive above L
 – zero on L
 – negative below L

• Initialize:
 error term \(e = -D(x, y)\)

• On each iteration:
 \(x' = x + 1\)
 \(e' = e + m\)
 \(y' = y\) (choose pixel E)

Summary of Bresenham

• initialize \(x, y, e\)
• for \((x = x_1; x \leq x_2; x++)\)
 – plot \((x, y)\)
 – update \(x, y, e\)
• Generalize to handle all eight octants using symmetry
• Can be modified to use only integer arithmetic

Line Rasterization

• We will use it for ray-casting acceleration
• March a ray through a grid
Line Rasterization vs. Grid Marching

- **Line Rasterization**: Best discrete approximation of the line
- **Ray Acceleration**: Must examine every cell the line touches

Circle Rasterization

- Generate pixels for 2nd octant only
- Slope progresses from 0 → −1
- Analog of Bresenham Segment Algorithm

Circle Rasterization

- **Decision Function**: \(D(x, y) = x^2 + y^2 - R^2 \)
- **Initialize**: error term \(e = -D(x, y) \)
- **On each iteration**:
 - update \(x \): \(x' = x + 1 \)
 - update \(e \): \(e' = e + 2x + 1 \)
 - if \(e \geq 0.5 \): \(y' = y \) (choose pixel E)
 - if \(e < 0.5 \): \(y' = y - 1 \) (choose pixel SE), \(e' = e + 1 \)

Philosophically

- **Discrete differential analyzer (DDA)**:
 - Perform incremental computation
 - Work on derivative rather than function
 - Gain one order for polynomial
 - Line becomes constant derivative
 - Circle becomes linear derivative

Questions?
Antialiased Line Rasterization

- Use gray scales to avoid jaggies
- Will be studied later in the course

Today

- Line scan-conversion
- Polygon scan conversion
 - smart
 - back to brute force
- Visibility

Today

- Line scan-conversion
- Polygon scan conversion
 - smart
 - back to brute force
- Visibility

2D Scan Conversion

- Geometric primitive
 - 2D: point, line, polygon, circle...
 - 3D: point, line, polyhedron, sphere...
- Primitives are continuous; screen is discrete

2D Scan Conversion

- Solution: compute discrete approximation
- Scan Conversion:
 algorithms for efficient generation of the samples comprising this approximation

Brute force solution for triangles

- For each pixel
 - Compute line equations at pixel center
 - “clip” against the triangle

Brute force solution for triangles

- For each pixel
 - Compute line equations at pixel center
 - “clip” against the triangle
 - If the triangle is small, a lot of useless computation
Brute force solution for triangles

- Improvement: Compute only for the *screen bounding box* of the triangle
- How do we get such a bounding box?
 - Xmin, Xmax, Ymin, Ymax of the triangle vertices

Can we do better? Kind of!

- We compute the line equation for many useless pixels
- What could we do?

Use line rasterization

- Compute the boundary pixels

Scan-line Rasterization

- Compute the boundary pixels
- Fill the spans

Scan-line Rasterization

- Requires some initial setup to prepare

Today

- Line scan-conversion
- Polygon scan conversion
 - smart
 - back to brute force
- Visibility
For modern graphics cards
- Triangles are usually very small
- Setup cost are becoming more troublesome
- Clipping is annoying
- Brute force is tractable

Modern rasterization
For every triangle
- Compute Projection
- Compute bbox, clip bbox to screen limits
- For all pixels in bbox
 - Compute line equations
 - If all line equations > 0 /pixel \([x, y]\) in triangle
 - Framebuffer\([x, y]\) = triangleColor

- Note that Bbox clipping is trivial

Can we do better?
For every triangle
- Compute Projection
- Compute bbox, clip bbox to screen limits
- For all pixels in bbox
 - Compute line equations \(ax + by + c\)
 - If all line equations > 0 /pixel \([x, y]\) in triangle
 - Framebuffer\([x, y]\) = triangleColor

- We don’t need to recompute line equation from scratch

Can we do better?
For every triangle
- Compute Projection
- Compute bbox, clip bbox to screen limits
- For all pixels in bbox
 - Compute line equations \(ax + by + c\)
 - If all line equations > 0 /pixel \([x, y]\) in triangle
 - Framebuffer\([x, y]\) = triangleColor

- We save one multiplication per pixel
Adding Gouraud shading

- Interpolate colors of the 3 vertices
- Linear interpolation

\[R = aR_0 + bR_1 + cR_2 \]

\text{such that } R[x_0, y_0] = R_0; R[x_1, y_1] = R_1; R[x_2, y_2] = R_2

\text{Same as a plane equation in } (x, y, R)

Adding Gouraud shading

Interpolate colors
For every triangle
Compute Projection
Compute bbox, clip bbox to screen limits
Setup line eq
Setup color equation
For all pixels in bbox
Increment line equations
Increment color equation
If all \(L_i > 0 \)
\text{pixel } [x, y] \text{ in triangle}
\text{Framebuffer}[x, y] = \text{interpolatedColor}

In the modern hardware

- Edge eq. in homogeneous coordinates [x, y, w]
- Tiles to add a mid-level granularity
 - Early rejection of tiles
 - Memory access coherence

Ref

- Triangle Scan Conversion using 2D Homogeneous Coordinates, Marc Olano Trey Greer
 \texttt{http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf}
Take-home message

- The appropriate algorithm depends on
 - Balance between various resources (CPU, memory, bandwidth)
 - The input (size of triangles, etc.)
- Smart algorithms often have initial preprocess
 - Assess whether it is worth it
- To save time, identify redundant computation
 - Put outside the loop and interpolate if needed

Questions?

Today

- Line scan-conversion
- Polygon scan conversion
 - smart
 - back to brute force
- Visibility

Visibility

- How do we know which parts are visible/in front?

Ray Casting

- Maintain intersection with closest object

Painter’s algorithm

- Draw back-to-front
- How do we sort objects?
- Can we always sort objects?
Painter’s algorithm

- Draw back-to-front
- How do we sort objects?
- Can we always sort objects?
 - No, there can be cycles
 - Requires to split polygons

Painter’s algorithm

- Old solution for hidden-surface removal
 - Good because ordering is useful for other operations (transparency, antialiasing)
- But
 - Ordering is tough
 - Cycles
 - Must be done by CPU
- Hardly used now
- But some sort of partial ordering is sometimes useful
 - Usually front-to-back
 - To make sure foreground is rendered first
 - For transparency

Visibility

- In ray casting, use intersection with closest t
- Now we have swapped the loops (pixel, object)
- How do we do?

Z buffer

- In addition to frame buffer (R, G, B)
- Store distance to camera (z-buffer)
- Pixel is updated only if new z is closer than z-buffer value

Z-buffer pseudo code

```
For every triangle
    Compute Projection, color at vertices
    Setup line equations
    Compute bbox, clip bbox to screen limits
    For all pixels in bbox
        Increment line equations
        Compute currentZ
        Increment currentColor
        If all line equations>0 /pixel [x,y] in triangle
            If currentZ<Buffer[x,y] /pixel is visible
                Framebuffer[x,y]=currentColor
                zBuffer[x,y]=currentZ
```

Works for hard cases!
What exactly do we store

- Floating point distance
- Can we interpolate z in screen space?
 - i.e. does z vary linearly in screen space?

Z interpolation

- $x' = x/z$
- Hyperbolic variation
- z cannot be linearly interpolated

Simple Perspective Projection

- Project all points along the z axis to the $z = d$ plane, eyepoint at the origin

Yet another Perspective Projection

- Change the z component
- Compute d/z
- Can be linearly interpolated

Advantages of $1/z$

- Can be interpolated linearly in screen space
- Puts more precision for close objects
- Useful when using integers
 - more precision where perceptible

Integer z-buffer

- Use $1/z$ to have more precision in the foreground
- Set a near and far plane
 - $1/z$ values linearly encoded between 1/near and 1/far
- Careful, test direction is reversed
Integer Z-buffer pseudo code

For every triangle
 Compute Projection, color at vertices
 Setup line equations, depth equation
 Compute bbox, clip bbox to screen limits
For all pixels in bbox
 Increment line equations
 Increment current_1ovZ
 Increment currentColor
 If all line equations > 0
 // pixel [x,y] in triangle
 If current_1ovZ > 1/ovzBuffer[x,y]
 // pixel is visible
 Framebuffer[x,y] = currentColor
 1/ovzBuffer[x,y] = current1ovZ

Gouraud interpolation

- Gouraud: interpolate color linearly in screen space
- Not correct. We should use hyperbolic interpolation
- But quite costly (division)
- However, can now be done on modern hardware

Questions?

- The infamous half pixel
 - I refuse to teach it, but it’s an annoying issue you should know about
 - Do a line drawing of a rectangle from [top, right] to [bottom, left]
 - Do we actually draw the columns/rows of pixels?

- The infamous half pixel
 - Displace by half a pixel so that top, right, bottom, left are in the middle of pixels
 - Just change the viewport transform
The Graphics Pipeline

Input:
- Geometric model
- Description of all object, surface, and light source geometry and transformations
- Lighting model
- Computational description of object and light properties, interaction (reflection)
- Synthetic viewpoint (or Camera)
- Eye position and viewing frustum
- Raster Viewport
 - Pixel grid onto which image plane is mapped

Output:
- Colors/Intensities suitable for framebuffer display
 - For example: 24-bit RGB value at each pixel

Modeling
- Transformations
Illumination
- (Shading)
Viewing Transformation
- Perspective / Orthographic
Clipping
Projection
- (to Screen Space)
Scan Conversion
- (Rasterization)
Visibility / Display

Modern Graphics Hardware

Graphics Hardware
- High performance through
 - Parallelism
 - Specialization
 - No data dependency
 - Efficient pre-fetching

Programmable Graphics Hardware
- Geometry and pixel (fragment) stage become programmable
 - Elaborate appearance
 - More and more general-purpose computation (GPU hacking)

Modern Graphics Hardware
- About 4-6 geometry units
- About 16 fragment units
- Deep pipeline (~800 stages)
- Tiling (about 4x4)
 - Early z-rejection if entire tile is occluded
- Pixels rasterized by quads (2x2 pixels)
 - Allows for derivatives
- Very efficient texture pre-fetching
 - And smart memory layout

Current GPUs
- Programmable geometry and fragment stages
- 600 million vertices/second, 6 billion texels/second
- In the range of tera operations/second
- Floating point operations only
- Very little cache
Computational Requirements

<table>
<thead>
<tr>
<th></th>
<th>Application</th>
<th>Command</th>
<th>Geometry</th>
<th>Rasterization</th>
<th>Texture</th>
<th>Fragment</th>
<th>Framebuffer</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Mverts/s</td>
<td>0.880 GB/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36 GB/s</td>
</tr>
<tr>
<td>1000 Mpix/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Mpix/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rough estimate

Vertex: 5 Gops
Fragment: 150 Gops

Questions?

Next Week: Ray Casting Acceleration