MIT 6.837 - Ray Tracing

Final Exam

- ... has been scheduled
- Thursday December $16^{\text {th }}, 1: 30-3: 30 \mathrm{pm}$
- DuPont
- Open Book

Last Week: Transformations

- Transformations in Ray Tracing
- Transforming the ray Remember: points \& directions transform differently!
- Normalizing direction \& what to do with t
- Normal transformation

$$
n_{W S} \mathbf{T}=n_{O S}\left(\mathbf{M}^{-1}\right)
$$

Tony DeRose - Math in the Movies

Tony DeRose: Pixar Animation Studios- Senior Scientist Date: 10-5-2004 (one week from today!)
Time: 1:00 PM- 2:00 PM
Location: 32-D449 (Stata Center, Patil/Kiva)

Film making is undergoing a digital revolution brought on by advances in areas such as computer technology, computational physics and computer graphics. This talk will provide a behind the scenes look at how fully digital films--- such as Pixar's "Monster's Inc" and "Finding Nemo" --- are made, with particular emphasis on the role that mathematics plays in the revolution.

Last Week: Transformations

- Linear, affine and projective transforms
- Homogeneous coordinates
- Matrix notation

- Transformation composition is not commutative

Last Time: Local Illumination

- BRDF - Bidirectional Reflectance Distribution Function
- Phong Model- Sum of 3 components:
- Diffuse Shading
- Specular Highlight

$$
L_{o}=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{I})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{L_{i}}{r^{2}}
$$

- Ambient Term

Phong Examples

- Shininess coefficient controls the "spread" of the specular highlight

Phong

Blinn-Torrance (scaled to approximate Phong) MIT EECS 6.837 , Cutler and Duran

The Phong Model

- Parameters
- k_{s} : specular reflection coefficient
- q : specular reflection exponent
$L_{o}=k_{s}(\cos \alpha)^{q} \frac{L_{i}}{r^{2}}=k_{s}(\mathbf{v} \cdot \mathbf{r})^{q} \frac{L_{i}}{r^{2}}$

Additional Phong Clamping Term

- Surfaces facing away from the light should not be lit (if $\mathrm{N} \cdot \mathrm{L}<0$)

- Scale by dot product to avoid a sharp edge at the light's grazing angle: specular *= max(N•L,0)

How Do We Obtain BRDFs?

- Gonioreflectometer
- 4 degrees of freedom

BRDFs in the Movie Industry

BRDF Models

- Phenomenological
- Phong [75]
- Blinn [77]
- Ward [92]
- Lafortune et al. [97]
- Ashikhmin et al. [00]
- Physical
- Cook-Torrance [81]
- He et al. [91]

Anisotropic BRDFs

- Surfaces with strongly oriented microgeometry elements
- Examples:
- brushed metals,
- hair, fur, cloth, velvet

Source: Westin et.al 92

BRDFs in the Movie Industry

Fresnel Reflection

- Increasing specularity near grazing angles.

Questions?

Today: Ray Tracing

Overview of Today

- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing

Ray Casting with Phong Shading

When you've found the closest intersection:
construct a ray
for every object
intersect ray with object
Complexity?
$\mathrm{O}(\mathrm{n} * \mathrm{~m})$
$\mathrm{n}=$ number of objects, $\mathrm{m}=$ number of pixels

color = ambient*hit->getMaterial()->getDiffuseColor() for every light
color += hit->getMaterial()->Shade
return color
Complexity?
$\mathrm{O}(\mathrm{n} * \mathrm{~m} * \mathrm{l})$
$1=$ number of lights

Questions?

Overview of Today

- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing

How Can We Add Shadows?

color = ambient*hit->getMaterial()->getDiffuseColor()
for every light
Ray ray2 (hitPoint, directionToLight)
Hit hit2 (distanceToLight, NULL, NULL)
For every object
object->intersect(ray2, hit2, 0)
if (hit2->getT() = distanceToLight) color += hit->getMaterial()->Shade
(ray, hit, directionToLight, lightColor)
return color

Problem: Self-Shadowing

color = ambient*hit->getMaterial()->getDiffuseColor()
for every light
Ray ray 2 (hitPoint, directionToLight)
Hit hit2 (distanceToLight, NULL, NULL) For every object
object->intersect(ray2, hit2, epsilo
if (hit2->getT() = distanceToLight)
color += hit->getMaterial()->Shade

Questions?

- Image Henrik Wann Jensen

Overview of Today

- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing

Mirror Reflection

- Cast ray symmetric with respect to the normal
- Multiply by reflection coefficient (color)
- Don't forget to add epsilon

and Durand

Without epsilon

Reflection

- Reflection angle $=$ view angle
- $\mathbf{R}=\mathbf{V}-2(\mathbf{V} \cdot \mathbf{N}) \mathbf{N}$

MIT EECS 6.837, Cutler and Durand

Amount of Reflection

- Traditional ray tracing (hack)
- Constant reflectionColor
- More realistic:
- Fresnel reflection term (more reflection at grazing angle)
- Schlick's approximation: $R(\theta)=R_{0}+\left(1-R_{0}\right)(1-\cos \theta)^{5}$

Overview of Today

- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing

Qualitative Refraction

From "Color and Light in Nature" by Lynch and Livingston

Refraction

MIT EECS 6.837, Cutler and Durand

Fig. 3.7A The optical manhole. From under water. the entire celestial hemisphere is compressed into a circle only 97.2° across. The dark boundary defining the cdges of the manhole is not sharp due to surface waves. The rays D. Granger)

Refraction \& the Sidedness of Objects

- Make sure you know whether you're entering or leaving the transmissive material:

- Note: We won't ask you to trace rays through intersecting transparent objects

Cool Refraction Demo

- Enright, D., Marschner, S. and Fedkiw, R.,

Cool Refraction Demo

- Enright, D., Marschner, S. and Fedkiw, R.,

Refraction and the Lifeguard Problem

How does a Rainbow Work?

- From "Color and Light in Nature" by Lynch and Livingstone

Rainbow

- Refraction depends on wavelength
- Rainbow is caused by refraction + internal reflection + refraction
- Maximum for angle around 42 degrees

Recursion For Reflection

0 recursion

1 recursion

2 recursions

The Ray Tree

R_{i} reflected ray
L_{i} shadow ray
T_{i} transmitted (refracted) ray

Ray Debugging (Assignment 4)

- Visualize the ray tree for single image pixel

Does Ray Tracing Simulate Physics?

- Photons go from the light to the eye, not the other way
- What we do is backward ray tracing

Does Ray Tracing Simulate Physics?

- Ray Tracing is full of dirty tricks
- For example, shadows of transparent objects:
- opaque?
- multiply by transparency color?
(ignores refraction \& does not produce caustics)

The Rendering Equation

- Clean mathematical framework for lighttransport simulation
- We'll see this later
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

A Look Ahead

- Assignment 2
- Transformations \& More Primitives
- Assignment 3
- OpenGL Pre Vzualization \& Phong Shading
- Assignment 4
- Ray Tracing (Shadows, Reflections, Refractions)

Next Time

