

Explicit vs. Implicit?

- Explicit
- Parametric
- Generates points
- Hard to verify that a point is on the object
- Implicit
- Solution of an equation
- Does not generate points
- Verifies that a point is on the object

Object-Oriented Design

- We want to be able to add primitives easily
- Inheritance and virtual methods
- Even the scene is derived from Object3D!

Graphics Textbooks

- Recommended for 6.837:

Peter Shirley
Fundamentals of
Computer Graphics
AK Peters

- Ray Tracing

Linear Algebra Review Session

- Monday Sept. 20 (this Monday!)
- Room 2-105 (we hope)
- 7:30 - 9 PM

Overview of Today

- Ray-Box Intersection
- Ray-Polygon Intersection
- Ray-Triangle Intersection
- Ray-Bunny Intersection \& extra topics...

Ray-Box Intersection

- Axis-aligned
- Box: $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}\right) \rightarrow\left(\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}\right)$
- Ray: $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{tR}_{\mathrm{d}}$

Reducing Total Computation

- Pairs of planes have the same normal
- Normals have only one non-0 component
- Do computations one dimension at a time
- Verify intersections are on the correct side of each plane: $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}<0$

Test if Parallel

- If $\mathrm{R}_{\mathrm{dx}}=0$ (ray is parallel) AND
$\mathrm{R}_{\mathrm{ox}}<\mathrm{X}_{1}$ or $\mathrm{R}_{\mathrm{ox}}>\mathrm{X}_{2} \rightarrow$ no intersection

Maintain $\mathrm{t}_{\text {near }} \& \mathrm{t}_{\text {far }}$

- Closest \& farthest intersections on the object
- If $\mathrm{t}_{1}>\mathrm{t}_{\text {near }}, \mathrm{t}_{\text {near }}=\mathrm{t}_{1}$
- If $\mathrm{t}_{2}<\mathrm{t}_{\text {far }}, \quad \mathrm{t}_{\text {far }}=\mathrm{t}_{2}$

Is the Box Behind the Eyepoint?

- If $\mathrm{t}_{\mathrm{far}}<\mathrm{t}_{\text {min }} \rightarrow$ box is behind

Return the Correct Intersection

- If $\mathrm{t}_{\text {near }}>\mathrm{t}_{\text {min }} \rightarrow$ closest intersection at $\mathrm{t}_{\text {near }}$
- Else $\quad \rightarrow$ closest intersection at $\mathrm{t}_{\text {far }}$

MIT EECS 6.837, Cutler and Durand

Ray-Box Intersection Summary

- For each dimension,
- If $\mathrm{R}_{\mathrm{dx}}=0$ (ray is parallel) AND
$\mathrm{R}_{\mathrm{ox}}<\mathrm{X}_{1}$ or $\mathrm{R}_{\mathrm{ox}}>\mathrm{X}_{2} \rightarrow$ no intersection
- For each dimension, calculate intersection distances t_{1} and t_{2}
$-\mathrm{t}_{1}=\left(\mathrm{X}_{1}-\mathrm{R}_{\mathrm{ox}}\right) / \mathrm{R}_{\mathrm{dx}} \quad \mathrm{t}_{2}=\left(\mathrm{X}_{2}-\mathrm{R}_{\mathrm{ox}}\right) / \mathrm{R}_{\mathrm{dx}}$
- If $t_{1}>t_{2}$, swap
- Maintain $\mathrm{t}_{\text {near }}$ and $\mathrm{t}_{\text {far }}$ (closest \& farthest intersections so far)
- If $\mathrm{t}_{1}>\mathrm{t}_{\text {near }}, \mathrm{t}_{\text {near }}=\mathrm{t}_{1} \quad$ If $\mathrm{t}_{2}<\mathrm{t}_{\text {far }}, \quad \mathrm{t}_{\text {far }}=\mathrm{t}_{2}$
- If $\mathrm{t}_{\text {near }}>\mathrm{t}_{\text {far }} \rightarrow$ box is missed
- If $\mathrm{t}_{\text {far }}<\mathrm{t}_{\text {min }} \rightarrow$ box is behind
- If $\mathrm{t}_{\text {near }}>\mathrm{t}_{\text {min }} \rightarrow$ closest intersection at $\mathrm{t}_{\text {near }}$
- Else \rightarrow closest intersection at $t_{\text {far }}$

Questions?

Image by Henrik Wann Jensen

Ray-Polygon Intersection

- Ray-plane intersection
- Test if intersection is in the polygon
- Solve in the 2D plane

Efficiency Issues

- $1 / \mathrm{R}_{\mathrm{dx}}, 1 / \mathrm{R}_{\mathrm{dy}}$ and $1 / \mathrm{R}_{\mathrm{dz}}$ can be pre-computed and shared for many boxes
- Unroll the loop
- Loops are costly (because of termination if)
- Avoid the $\mathrm{t}_{\text {near }} \& \mathrm{t}_{\text {far }}$ comparison for first dimension

Overview of Today

- Ray-Box Intersection
- Ray-Polygon Intersection
- Ray-Triangle Intersection

- Ray-Bunny Intersection \& extra topics...

Point Inside/Outside Polygon

- Ray intersection definition:
- Cast a ray in any direction
- (axis-aligned is smarter)
- Count intersections
- If odd number, point is inside
- Works for concave and star-shaped

Precision Issue

- What if we intersect a vertex?
- We might wrongly count an intersection for exactly one adjacent edge
- Decide that the vertex is always above the ray

Winding Number

- To solve problem with star pentagon:
- Oriented edges
- Signed count of intersections
- Outside if 0 intersections

Alternative Definition

- Sum of the signed angles from point to edges $\pm 360^{\circ}, \pm 720^{\circ}, \ldots \rightarrow$ point is inside $0^{\circ} \rightarrow$ point is outside

Questions?

Image by Henrik Wann Jensen
MIT EECS 6.837, Cutler and Durand

Overview of Today

- Ray-Box Intersection
- Ray-Polygon Intersection
- Ray-Triangle Intersection

- Ray-Bunny Intersection \& extra topics...

Ray-Triangle Intersection

- Use ray-polygon
- Or try to be smarter
- Use barycentric coordinates

MIT EECS 6.837, Cutler and Durand

Barycentric Definition of a Triangle

- $\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
with $\alpha+\beta+\gamma=1$
- AND $0<\alpha<1$ \& $0<\beta<1 \& 0<\gamma<1$

Intuition Behind Area Formula

- P is barycenter of a and Q
- A_{a} is the interpolation coefficient on $a Q$
- All points on lines parallel to $\overline{\mathrm{bc}}$ have the same α (All such triangles have same height/area)

Simplify

- Since $\alpha+\beta+\gamma=1$, we can write $\alpha=1-\beta-\gamma$
$\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
$\mathrm{P}(\beta, \gamma)$
$=(1-\beta-\gamma) a+\beta b+\gamma c$

Intersection with Barycentric Triangle

- Set ray equation equal to barycentric equation

$$
\begin{aligned}
\mathrm{P}(\mathrm{t}) & =\mathrm{P}(\beta, \gamma) \\
\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}} & =\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\gamma(\mathrm{c}-\mathrm{a})
\end{aligned}
$$

- Intersection if $\beta+\gamma<1 \quad \& \quad \beta>0$ \& $\gamma>0$

Cramer's Rule

- Used to solve for one variable at a time in system of equations

$$
\begin{aligned}
& \beta=\frac{\left|\begin{array}{lll}
a_{x}-R_{o x} & a_{x}-c_{x} & R_{d x} \\
a_{y}-R_{o y} & a_{y}-c_{y} & R_{d y} \\
a_{z}-R_{o z} & a_{z}-c_{z} & R_{d z}
\end{array}\right|}{|A|} \gamma=\frac{\left|\begin{array}{ccc}
a_{x}-b_{x} & a_{x}-R_{o x} & R_{d x} \\
a_{y}-b_{y} & a_{y}-R_{o y} & R_{d y} \\
a_{z}-b_{z} & a_{z}-R_{o z} & R_{d z}
\end{array}\right|}{|A|} \\
& t=\frac{\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-c_{x} & a_{x}-R_{o x} \\
a_{y}-b_{y} & a_{y}-c_{y} & a_{y}-R_{o y} \\
a_{z}-b_{z} & a_{z}-c_{z} & a_{z}-R_{o z}
\end{array}\right|}{|A|} \begin{array}{l}
\text { | denotes the } \\
\text { determinant }
\end{array} \\
& \text { MIT EECS 6.837, Cutler and Durand }
\end{aligned}
$$

Questions?

Image computed using the RADIANCE system by Greg Ward

Overview of Today

- Ray-Box Intersection
- Ray-Polygon Intersection
- Ray-Triangle Intersection
- Ray-Bunny Intersection \& extra topics...

Precision

- What happens when
- Origin is on an object?
- Grazing rays?
- Problem with floating-point approximation

MIT EECS 6.837, Cutler and Durand

Acquiring Geometry

- 3D Scanning

Digital Michealangelo Project (Stanford)

Cyberware

The evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface (no false positive)
- Because secondary rays

MIT EECS 6.837, Cutler and Durand

The evil ε : a hint of nightmare

- Edges in triangle meshes
- Must report intersection (otherwise not watertight)
- No false negative

Constructive Solid Geometry (CSG)
Given overlapping shapes A and B:

Collect all the intersections

Early CSG Raytraced Image

Next week: Transformations

Identity

Translation

Isotropic
(Uniform)

