

Last Time?

- Luxo Jr.
- Applications of Computer Graphics
- Overview of the semester
- IFS
- Assignment 0 due tomorrow @ 11:59pm
- Questions?

Notes on Assignments

- Make sure you turn in a linux or windows executable (so we can test your program)
- Don't use athena dialup
- In your README.txt
- time spent, collaborators, known bugs, extensions
-6.837-staff@graphics.csail.mit.edu

Administrivia: Lab \& Office Hours

- Barb
- Mondays 6-8pm in W20-575
- Fredo
- Tuesdays 6-7pm in W20-575
- Rob
- Wednesdays 8-11pm in W20-575
- Send email to make an appointment for some other time

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

6

Shading

For every pixel

Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade depending on light, and normal vector
 7

A Note on Shading

- Surface/Scene Characteristics:
- surface normal
- direction to light
- viewpoint
- Material Properties
- Diffuse (matte)
- Specular (shiny)
- ...
- Much more next Thursday!

Ray Casting

```
For every pixel
    Construct a ray from the eye
    For every object in the scene
            Find intersection with the ray
            Keep if closest
    Shade depending on light and normal vector
```


Finding the intersection and normal is the central part of ray casting

Ray Representation?

- Two vectors:
- Origin
- Direction (normalized is better)
- Parametric line

Durer's Ray Casting Machine

- Albrecht Durer, $16^{\text {th }}$ century

Durer's Ray Casting Machine

- Albrecht Durer, $16^{\text {th }}$ century

Overview of Today

- Ray Casting Basics
- Camera and Ray Generation

- Ray-Plane Intersection
- Ray-Sphere Intersection

Durer's Ray Casting Machine

- Albrecht Durer, $16^{\text {th }}$ century

Questions?

MIT EECS 6.837, Cutler and Durand

Pinhole Camera

- Box with a tiny hole
- Inverted image
- Perfect image if hole infinitely small
- Pure geometric optics
- No depth of field issue

Oldest Illustration

- From. R. Gemma Frisius, 1545

Camera Obscura Today

Simplified Pinhole Camera

- Eye-image pyramid (frustum)
- Note that the distance/size of image are arbitrary

Camera Description?

- Eye point e (center)
- Orthobasis u, v, w (horizontal, up,-direction)
- Field of view angle
- Image rectangle height, width

Orthographic Camera

- Ray Generation?
- Origin $=$ center $+(x-0.5)^{*}$ size*horizontal $+(y-0.5) *$ size*up
- Direction is constant

Questions?

MIT EECS 6.837, Cutler and Durand

Perspective vs. Orthographic

perspective

orthographic

- Parallel projection
- No foreshortening
- No vanishing point

Other Weird Cameras

- E.g. fish eye, omnimax, panorama

MIT EECS 6.837, Cutler and Durand

Overview of Today

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection

- Ray-Sphere Intersection

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
First we will study ray-plane intersection

3D Plane Representation?

- Plane defined by

- Point-Plane distance?
- If n is normalized, distance to plane, $\mathrm{d}=\mathrm{H}(\mathrm{P})$
-d is the signed distance!

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Recall: Ray Representation

- Parametric line
- $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Explicit representation

Explicit vs. Implicit?

- Ray equation is explicit $P(t)=R_{o}+t * R_{d}$
- Parametric
- Generates points
- Hard to verify that a point is on the ray
- Plane equation is implicit $H(P)=n \cdot P+D=0$
- Solution of an equation
- Does not generate points
- Verifies that a point is on the plane
- Exercise: Explicit plane and implicit ray

Additional Housekeeping

- Verify that intersection is closer than previous

$$
\mathrm{P}(\mathrm{t})<\mathrm{t}_{\text {current }}
$$

- Verify that it is not out of range (behind eye)

Normal

Questions?

- For shading
- diffuse: dot product between light and normal
- Normal is constant

Image by Henrik Wann Jensen

Sphere Representation?

- Implicit sphere equation
- Assume centered at origin (easy to translate)
$-\mathrm{H}(\mathrm{P})=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0$

MIT EECS 6.837, Cutler and Durand

Ray-Sphere Intersection

- Quadratic: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$
$-\mathrm{a}=1 \quad\left(\right.$ remember, $\left.\left\|\mathrm{R}_{\mathrm{d}}\right\|=1\right)$
$-\mathrm{b}=2 \mathrm{R}_{\mathrm{d}} \cdot \mathrm{R}_{\mathrm{o}}$
$-\mathrm{c}=\mathrm{R}_{\mathrm{o}} \cdot \mathrm{R}_{\mathrm{o}}-\mathrm{r}^{2}$
- with discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$

Ray-Sphere Intersection

- 3 cases, depending on the sign of $b^{2}-4 a c$
- What do these cases correspond to?
- Which root ($\mathrm{t}+$ or $\mathrm{t}-$) should you choose?
- Closest positive! (usually t-)

Ray-Sphere Intersection

Geometric Ray-Sphere Intersection

- Is ray origin inside/outside/on sphere?
$-\left(R_{0} \cdot R_{o}<r^{2} / R_{0} \cdot R_{o}>r^{2} / R_{o} \cdot R_{o}=r^{2}\right)$
- If origin on sphere, be careful about degeneracies...

Geometric Ray-Sphere Intersection

Geometric Ray-Sphere Intersection

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $\mathbf{t}_{\mathbf{p}}=-\mathbf{R}_{0} \cdot \mathbf{R}_{\mathrm{d}}$.
- Find squared distance, $\mathbf{d}^{2}=\mathbf{R}_{0} \cdot \mathbf{R}_{0}-\mathbf{t}_{\mathbf{P}}{ }^{2}$
- If d ${ }^{2}>\mathrm{r}^{2} \rightarrow$ no hit

MIT EECS 6.837, Cutler and Durand

Geometric Ray-Sphere Intersection

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $\mathbf{t}_{\mathrm{p}}=-\mathbf{R}_{\mathrm{o}} \cdot \mathbf{R}_{\mathrm{d}}$.
- Find squared distance: $\mathbf{d}^{2}=\mathbf{R}_{0} \cdot \mathbf{R}_{0}-\mathbf{t}_{\mathrm{P}}{ }^{2}$
- Find distance $\left(\mathrm{t}^{\prime}\right)$ from closest point $\left(\mathrm{t}_{\mathrm{p}}\right)$ to correct intersection: $\mathbf{t}^{\prime 2}=\mathbf{r}^{\mathbf{2}}-\mathbf{d}^{2}$
- If origin outside sphere $\rightarrow t=t_{P}-t^{\prime}$
- If origin inside sphere $\rightarrow \mathrm{t}=\mathrm{t}_{\mathrm{P}}+\mathrm{t}^{\prime}$

Sphere Normal

- Simply $\mathrm{Q} /\|\mathrm{Q}\|$
$-\mathrm{Q}=\mathrm{P}(\mathrm{t})$, intersection point
- (for spheres centered at origin)

MIT EECS 6.837, Cutler and Durand

Precision

- What happens when
- Origin is on an object?
- Grazing rays?
- Problem with floating-point approximation

Geometric vs. Algebraic

- Algebraic is simple \& generic
- Geometric is more efficient
- Timely tests
- In particular for rays outside and pointing away

Questions?

MIT EECS 6.837, Cutler and Durand

The evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface (no false positive)
- Because secondary rays

MIT EECS 6.837, Cutler and Durand

The evil ε : a hint of nightmare

- Edges in triangle meshes
- Must report intersection (otherwise not watertight)
- No false negative

Object-Oriented Design

- We want to be able to add primitives easily - Inheritance and virtual methods
- Even the scene is derived from Object3D!

Assignment 1: Ray Casting

- Write a basic ray caster
- Orthographic camera
- Sphere Intersection
- Main loop rendering

- 2 Display modes: color and distance
- We provide:
- Ray: origin, direction
- Hit: t, Material, (normal)
- Scene Parsing

Graphics Textbooks

- Recommended for 6.837: Peter Shirley Fundamentals of Computer Graphics AK Peters

- Ray Tracing

Next Time: More Ray Casting

- Other primitives
- Boxes
- Polygons
- Triangles
- IFS?

