6.837 Introduction to Computer Graphics Quiz 1: Ray Tracing Tuesday October 7, 2003 2:40-4pm One hand-written sheet allowed Total is 50 points Name: 1 Ray Tracing [/14] #### 1.1 Complexity [/3] We want to render a scene of N objects with one single light source onto an image of M pixels (the image resolution is $\sqrt{M}*\sqrt{M}$). Any object can be reflective and refractive, but we enforce a maximum recursion depth of K. What is the worst-case complexity of ray tracing for the total image? ### 1.2 Light sources [/2] How is this complexity changed when we have L light sources? #### 1.3 Forward ray tracing [/3] Give a 1-to-2-sentence explanation of why forward ray tracing is not directly practical. ## 1.4 What is the bug that caused the artifacts in this image? [/3] ## 1.5 Which sphere has the bigger index of refraction? [/3] | 2.1 Matrix form $[$ /3 $]$ | |--| | What is the 4×4 matrix in homogeneous coordinate form corresponding to a 3D translation by (a, b, c) ? | | | | 2.2 Normal transform [/3] | | In a ray tracer, when an object is transformed by a linear transformation described by matrix how must we transform the surface normal after ray intersection? Give both a one- or two-senten explanation and a formula. | | | | 3 Local shading [/8] | | 3.1 Coefficients [/3] | | Describe what the image will look like if the scene contains no real light source but the ambient lig color is $(1,1,1)$. | | | | 3.2 Give a one-sentence description of the Fresnel effect. [/3] | | | | 3.3 Dimensionality of BRDFs [/2] | | How many dimensions does an anisotropic BRDF have? | | How many dimensions does an isotropic BRDF have? | Transformations [/6] # 4 Ray-Cylinder Intersection [/22] ### 4.1 Implicit cylinder [/2] Give the implicit equation for an infinite cylinder centered on the z axis and with radius r. ### 4.2 Explicit ray [/2] Give the explicit (parametric) equation for a ray with origin ${\bf R}$ and direction ${\bf D}$. ### 4.3 Ray-cylinder intersection equation [/4] Write the quadratic equation for the intersection of a ray with an infinite cylinder centered on the z axis. Solve your equation for t. ## 4.4 Ray-cylinder intersection pseudo code [/8] Using the result from the previous question, write the pseudocode for the intersection method bool Cylinder::intersect(const Ray &r, Hit &h, float tmin); Don't forget to compute the surface normal, but don't worry about the material. #### 4.5 General cylinder [/3] In your ray tracer, without writing additional code, how would you use the code from question 4.4 to render arbitrary infinite cylinders (arbitrary position and arbitrary orientation)? #### 4.6 Non-infinite cylinders [/3] How would you modify the code from question 4.4 to render non-infinite cylinders. That is, the cylinder only goes from z_1 to z_2 . You do not need to render the caps of the cylinder. You can assume that $z_2 \ge z_1$.