The Problem:

- Don't want to represent all this detail with geometry

Procedural Solid (3D) Textures

- Write a function: \(f(x,y,z) \rightarrow \text{color} \)
 - non-intuitive
 - difficult to match existing texture

The Quest for Visual Realism

Today

- 2D Texture Mapping
 - Perspective Correct Interpolation
 - Illumination
 - Texture Mapping Difficulties
 - Projective Texturing
- Other Mapping Techniques

Photo-textures

For each triangle in the model establish a corresponding region in the phototexture

During rasterization interpolate the coordinate indices into the texture map
Texture Mapping

- Like wallpapering or gift-wrapping with stretchy paper
- Curved surfaces require extra stretching or cutting

Texture Coordinates

- Specify a texture coordinate \((u,v)\) at each vertex
- Canonical texture coordinates \((0,0) \rightarrow (1,1)\)
- Often the texture size is a power of 2 (but it doesn't have to be)
- How can we tile this texture?

Tiling Texture

- Seamless tiling (repeating)
- Tiles with visible seams

Texture Coordinates

- Specify a texture coordinate \((s,t)\) at each vertex
- Canonical texture coordinates \((0,0) \rightarrow (1,1)\)
- Can we just linearly interpolate the values in screen space?

What Goes Wrong?

- Texture source
- What we get
- What we want

Looking at One Edge

- Consider one edge from a given triangle. This edge and its projection onto our viewport lie in a single common plane illustrated below:
Visualizing the Problem

Let's assume that the viewport is located 1 unit away from the center of projection.

Notice that uniform steps on the image plane do not correspond to uniform steps along the edge.

How do we fix it?

• We can reduce the perceived artifacts of non-perspective correct interpolation by subdividing the model into smaller triangles. Why?
 • However, sometimes the errors become obvious
 – At "T" joints
 – When switching between levels-of-detail representations (mipmapping... next time)

Subdivision

Linear Interpolation in Screen Space

Compare linear interpolation in screen space
to interpolation in 3-space

Perspective Correct Interpolation

We need a mapping from \(t \) values to \(s \) values:

\[
\frac{s}{z_1 + t(z_1 - z_2)} = \frac{t}{z_1} + t \left(\frac{z_1}{z_1} - \frac{z_2}{z_1} \right)
\]

Solve for \(s \) in terms of \(t \):

Unfortunately, at this point in the pipeline (after projection) we no longer have \(z \). However, we do have \(w_1 = z_1/z_2 \) and \(w_2 = z_2/z_2 \), so:

\[
\frac{s}{z_1 + t(z_1 - z_2)} = \frac{t}{z_1} + t \left(\frac{z_1}{z_1} - \frac{z_2}{z_1} \right)
\]
Questions?

Today

• 2D Texture Mapping
 – Perspective Correct Interpolation
 – Illumination
 – Texture Mapping Difficulties
 – Projective Texturing
• Other Mapping Techniques

Texture Mapping & Illumination

• Texture mapping can be used to alter some or all of the constants in the illumination equation: as the final color for the pixel, or as the diffuse color, or to alter the normal, ... the possibilities are endless! (e.g. GL_DECAL, GL_MODULATE, GL_BLEND, ...)

\[
I_{\text{out}} = I_{\text{in}} + \sum_{f} I_{f}
\]

Phong's Illumination Model

Texture Mapping Difficulties

• Tedious to specify texture coordinates for every triangle
• Easier to model variations in reflectance than illumination
• Acquiring textures is surprisingly difficult
 – Texture image can't have projective distortions
 – Seamless tiling
 – Non-repeating textures

Common Texture Coordinate Mappings

• Orthogonal
• Cylindrical
• Spherical
• Perspective Projection
• Texture Chart
Projective Textures

- Treat the texture as a light source (a slide projector)
- No need to specify texture coordinates explicitly
- A good model for shading variations due to illumination
- A fair model for reflectance (can use pictures)

Projective Texture Example

- Modeling from photograph
- Using input photos as textures

Texture Chart

- Pack triangles into a single image

Questions?

Today

- 2D Texture Mapping
- Other Mapping Techniques:
 - Projective Shadows and Shadow Maps
 - Bump Mapping
 - Displacement Mapping
 - Environment Mapping (for Reflections)

Projective Shadows

Image from light source BW image of obstacle Final image

Figure from Möller & Haines “Real-Time Rendering”
Today

- 2D Texture Mapping
- Other Mapping Techniques:
 - Projective Shadows and Shadow Maps
 - Bump Mapping
 - Displacement Mapping
 - Environment Mapping (for Reflections)

What's Missing?

- What's the difference between a real brick wall and a photograph of the wall texture-mapped onto a plane?
- What happens if we change the lighting or the camera position?

Remember Phong Normal Interpolation?

- Instead of using the normal of the triangle, interpolate an averaged normal at each vertex across the face

Bump Mapping

- Textures can be used to alter the surface normal of an object.
- This does not change the actual shape of the surface -- we are only shading it as if it were a different shape!
Bump Mapping

- The texture map is treated as a single-valued height function.
- The partial derivatives of the texture tell us how to alter the true surface normal at each point to make the object appear as if it were deformed by the height function.

Another Bump Map Example

Questions?

Today

- 2D Texture Mapping
- Other Mapping Techniques:
 - Projective Shadows and Shadow Maps
 - Bump Mapping
 - Displacement Mapping
 - Environment Mapping (for Reflections)

What's Missing?

- What does a texture- & bump-mapped brick wall look like as you move the viewpoint?
- What does the silhouette of a bump-mapped sphere look like?
Displacement Mapping

• Use the texture map to actually move the surface point. How is this different than bump mapping?
• The geometry must be displaced before visibility is determined. Is this easily done in the graphics pipeline? In a ray-tracer?

Displacement Mapping

Image from: Geometry Caching for Ray-Tracing Displacement Maps by Matt Pharr and Pat Hanrahan.

Questions?

Ken Musgrave

Today

• 2D Texture Mapping
• Other Mapping Techniques:
 – Projective Shadows and Shadow Maps
 – Bump Mapping
 – Displacement Mapping
 – Environment Mapping (for Reflections)

Environment Maps

• We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at “infinity”.
• Assumes that all reflected rays begin from the same point.
What's the Best Chart?

Environment Mapping Example

Questions?

Textures can Alias

Next Time:

Textures can Alias

• *Aliasing* is the under-sampling of a signal, and it's especially noticeable during animation

Next Time:

Aliasing, Anti-Aliasing & Mipmaps for Texturing