

Monte Carlo Recap

- Random rays to sample rendering equation
- No meshing required, no special storage
- No limitation
- On reflectance
- On geometry
- Can be noisy (or slow $\frac{1}{\sqrt{n}}$)
- Advanced
- Irradiance cache
- Photon map

Color Vision
6

You believe you know it all

- Color is about spectrum and wavelength
- We can get everything from red, green and blue

- Well, life is more confusing than that!

Color Vision

Puzzles about color

- How comes a continuous spectrum ends up as a 3D color space
- Why is violet "close" to red
- Primaries: 3 or 4? Which ones
- Red, blue, yellow, green
- Cyan and magenta are not "spontaneous" primaries
- Color mixing
- What is the color of Henry IV's white horse?

Color Vision

Areas of the brain

Plan

- Color Vision

Cone spectral sensitivity

- Short, Medium and Long wavelength

Cones do not "see" colors

- Different wavelength, different intensity
- Same response

Color Vision
18

Response comparison

- Different wavelength, different intensity
- But different response for different cones

Color Vision
von Helmholtz 1859: Trichromatic theory

Metamers

- Different spectrum
- Same response

Metamerism \& light source

- Metamers under a given light source
- May not be metamers under a different lamp

Color blindness

- Dalton
- 8% male, 0.6% female
- Genetic
- Dichromate (2\% male)
- One type of cone missing
- L (protanope), M (deuteranope),

S (tritanope)

- Anomalous trichromat
- Shifted sensitivity

Color Vision

Color blindness test

- Maze in subtle intensity contrast
- Visible only to color blinds
- Color contrast overrides intensity otherwise

Color Vision

Plan

- Color Vision
- Cone response, trichromats
- Opponent theory
- Higher-level
- Color spaces
- Producing color
- Color effects

Color blindness test

Questions?

Hering 1874: Opponent Colors

- Hypothesis of 3 types of receptors: Red/Green, Blue/Yellow, Black/White
- Explains well several visual phenomena

Color Vision

Color opponents wiring

- Sums for brightness
- Differences for color opponents

Land Retinex

Simultaneous Color Contrast

Opponents and image compression

Color Vision
40

Color reparameterization

- The input is LMS
- The output has a different parameterization:
- Light-dark
- Blue-yellow
- Red-green
- A later stage may reparameterize:
- Brightness or Luminance or Value
- Hue
- Saturation

Color Vision

Color categories

- Prototypes
- Harder to classify colors at boundaries

Plan

- Color Vision
- Color spaces
- Producing color
- Color effects

Hue Saturation Value

- One interpretation in spectrum space
- Not the only one because of metamerism
- Dominant wavelength (hue)
- Intensity
- Purity (saturation)

Color Vision

Color spaces

- Human color perception is 3 dimensional
- How should we parameterize this 3D space
- Various constraints/goals
- Linear parameterization
- Close to color technology
- Close to human perception
- Standard

The root of all evil

- Cone responses are not orthogonal (they overlap)
- To change the M response without changing the L one, we need negative light

Color Matching Problem

- Some colors cannot be produced using only positively weighted primaries
- Solution: add light on the other side!

CIE color space

CIE color space

CIE color space

- Objective, quantitative color descriptions
- Dominant wavelength:
- Wavelength "seen" (corresponds to Hue)
- Excitation purity:
- Saturation, expressed objectively
- Luminance:
- Intensity
- Chromaticity (independent of luminance): - normalize against $X+Y+Z$:
$x=\frac{X}{X+Y+Z} ; \quad y=\frac{Y}{X+Y+Z} ; \quad z=\frac{Z}{X+Y+Z}$

CIE color space

- Match color at some point A
- A is mix of white C, spectral B!
- What is dominant wavelength of A ?
- What is excitation purity (\%) of A?
- Move along AC/BC

Color Vision 57

XYZ vs. RGB

- Linear transform
- XYZ is more standardized

- XYZ can reproduce all colors with positive values
- XYZ is not realizable physically !!
- What happens if you go "off" the diagram
- In fact, the orthogonal (synthesis) basis of XYZ requires negative values.

Color Vision

Color response and RGB or LMS

- Project the infinite-D spectrum onto a subspace defined by 3 basis functions
- Small problem: this basis is NOT orthogonal
- What does orthogonal mean in our case?

- Second problem: the orthogonal basis is NOT physically realizable
Color Vision 63

Color response linear subspace

- Project the infinite-D spectrum onto a subspace defined by 3 basis functions
- We can use 3×3 matrices to change the colorspace
- E.g. LMS to RGB
- E.g. RGB to CIE XYZ

Color Vision

Color response and RGB or LMS

- Project the infinite-D spectrum onto a subspace defined by 3 basis functions
- Small problem: this basis is NOT orthogonal
- What does orthogonal mean in our case?

- Second problem: the orthogonal basis is NOT physically realizable
Color Vision

Questions

Lippman spectral color reproduction
Color Vision
66

Playtime: Prokudin-Gorskii

- Russia circa 1900
- One camera, move the film with filters to get 3 exposures

http://www.loc.gov/exhibits/empire/
Color Vision
http://www.loc.gov/exhibits/empire/
Color Vision

Playtime: Prokudin-Gorskii

Color Vision
71
Second part on Tuesday

