

Final projects

- Rest of semester
- Weekly meetings with TAs
- Office hours on appointment
- This week, with TAs
- Refine timeline
- Define high-level architecture
- Project should be a whole, but subparts should be identified with regular merging of code

Illumination (Shading) (Lighting)

2D Scan Conversion

- Geometric primitive
- 2D: point, line, polygon, circle...
- 3D: point, line, polyhedron, sphere...
- Primitives are continuous; screen is discrete

MIT EECS 6.837, Cutter and Durand

2D Scan Conversion

- Solution: compute discrete approximation
- Scan Conversion:
algorithms for efficient generation of the samples comprising this approximation

Brute force solution for triangles

- ?

MIT EECS 6.837, Cutler and Durand

For modern graphics cards

- Triangles are usually very small
- Setup cost are becoming more troublesome
- Clipping is annoying
- Brute force is tractable

Can we do better?

computeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations
If all line equations>0 //pixel $[x, y]$ in triangle
Framebuffer $[x, y]=t r i a n g l e C o l o r$

MIT EECS 6.837, Cutler and Durand

Can we do better?
For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations ax+by+c
If all line equations>0//pixel $[x, y]$ in triangle
Framebuffer $[x, y]=$ trianglecolor

- We don't need to recompute line equation from scratch

Can we do better?

For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq
compute $a_{i} d x, b_{i} d y$ for the 3 lines
Initialize line eq, values for bbox corner $L_{i}=a_{i} \times 0+b_{i} y+c_{i}$
For all scanline y in bbox
For 3 lines, update Li
For all x in bbox
Increment line equations: Li+=adx
If all Li>0 //pixel $[x, y]$ in triangle
Framebuffer[x,y]=triangleColor

- We save one multiplication per pixel

The Graphics Pipeline

Modeling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display

- Modern hardware mostly avoids clipping
- Only with respect to plane $\mathrm{z}=0$

Adding Gouraud shading

- Interpolate colors of the 3 vertices
- Linear interpolation

MIT EECS 6.837, Cutler and Durand

Adding Gouraud shading

- Interpolate colors of the 3 vertices
- Linear interpolation, e.g. for R channel:
$-R=a_{R} x+b_{R} y+c_{R}$
- Such that $\mathrm{R}[\mathrm{x} 0, \mathrm{y} 0]=\mathrm{R} 0 ; \mathrm{R}[\mathrm{x} 1, \mathrm{y} 1]=\mathrm{R} 1 ; \mathrm{R}[\mathrm{x} 2, \mathrm{y} 2]=\mathrm{R} 2$
- Same as a plane equation in (x, y, R)

Adding Gouraud shading

Interpolate colors
For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq
Setup color equation
For all pixels in bbox
Increment line equations
Increment color equation
If all Li>0 //pixel $[x, y]$ in triangle Framebuffer $[x, y]=$ interpolatedColor

In the modern hardware

- Edge eq. in homogeneous coordinates [x, y, w]
- Tiles to add a mid-level granularity
- early rejection of tiles
- Memory access coherence

MIT EECS 6.837, Cutler and Durand

Take-home message

- The appropriate algorithm depends on
- Balance between various resources (CPU, memory, bandwidth)
- The input (size of triangles, etc.)
- Smart algorithms often have initial preprocess
- Assess whether it is worth it
- To save time, identify redundant computation
- Put outside the loop and interpolate if needed
- Triangle Scan Conversion using 2D Homogeneous Coordinates, Marc Olano Trey Greer

Painter's algorithm

- Old solution for hidden-surface removal
- Good because ordering is useful for other operations (transparency, antialiasing)
- But
- Ordering is tough
- Cycles
- Must be done by CPU
- Hardly used now
- But some sort of partial ordering is sometimes useful
- Usuall front-to-back
- To make sure foreground is rendered first

visibility

- In ray casting, use intersection with closest t
- Now we have swapped the loops (pixel, object)
- How do we do?

Z-buffer pseudo code

For every triangle
Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Increment line equations

compute curentz

Increment currentColor
If all line equations>0 //pixel $[x, y]$ in triangle If currentZ<ZBuffer $[x, y] / / p i x e l$ is visible Framebuffer $[x, y]=c u r r e n t C o l o r$ zBuffer[x,y]=currentz

What exactly do we store

- Floating point distance
- Can we interpolate z in screen space?
- i.e. does z vary linearly in screen space?

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane, eyepoint at the origin

Advantages of $1 / \mathrm{z}$

- Can be interpolated linearly in screen space
- Puts more precision for close objects
- Useful when using integers
- more precision where perceptible

Integer z-buffer

- Use $1 / \mathrm{z}$ to have more precision in the foreground
- Set a near and far plane
$-1 / \mathrm{z}$ values linearly encoded between $1 /$ near and $1 /$ far
- Careful, test direction is reversed

Integer Z-buffer pseudo code

For every triangle
Compute Projection, color at vertices Setup line equations, depth equation Compute bbox, clip bbox to screen limits For all pixels in bbox

Increment line equations
Increment curent_1ovZ
Increment currentColor
If all line equations>0 //pixel $[x, y]$ in triangle
If current_1ovZ>10vzBuffer $[x, y] / /$ pixel is visible Framebuffer $[x, y]=$ currentColor 1ovzBuffer[x,y]=current1ovZ

Gouraud interpolation

- Gouraud: interpolate color linearly in screen space
- Not correct. We should use hyperbolic interpolation
- But quite costly (division)

Next time

- Clipping
- Segment intersection \& scanline algorithms

