

Questions?

Last Time?

Today: Line Clipping \& Rasterization

Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- Antialiased Lines

Clipping

- Eliminate portions of objects outside the viewing frustum
- View Frustum
- boundaries of the image plane projected in 3D
- a near \& far clipping plane
- User may define additional clipping planes

Why clip?

- Avoid degeneracies
- Don't draw stuff behind the eye
- Avoid division by 0 and overflow
- Efficiency
- Don't waste time on objects outside the image boundary
- Other graphics applications (often non-convex)
- Hidden surface removal, Shadows, Picking, Binning, CSG (Boolean) operations (2D \& 3D)

Questions?

Implicit 3D Plane Equation

- Plane defined by:
point $p \&$ normal n OR normal $n \&$ offset d OR 3 points

- Implicit plane equation
$\mathrm{A} x+\mathrm{B} y+\mathrm{C} z+\mathrm{D}=0$

Clipping strategies

- Don't clip (and hope for the best)
- Clip on-the-fly during rasterization
- Analytical clipping: alter input geometry

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Point \& Line Clipping
- Plane - Line intersection
- Segment Clipping
- Acceleration using outcodes
- Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Homogeneous Coordinates

- Homogenous point: (x,y,z,w)
infinite number of equivalent homogenous coordinates: (sx, sy, sz, sw)

- Homogenous Plane Equation:
$\mathrm{A} x+\mathrm{B} y+\mathrm{C} z+\mathrm{D}=0 \rightarrow \mathrm{H}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
Infinite number of equivalent plane expressions:
$\mathrm{sA} x+\mathrm{sB} y+\mathrm{sCz}+\mathrm{sD}=0 \rightarrow \mathrm{H}=(\mathrm{sA}, \mathrm{sB}, \mathrm{sC}, \mathrm{sD})$

Point-to-Plane Distance

- If $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is normalized:
$d=H \cdot p=H^{T} p$ (the dot product in homogeneous coordinates)
- d is a signed distance

positive $=$ "inside" negative $=$ "outside"

Clipping with respect to View Frustum

- Test against each of the 6 planes
- Normals oriented towards the interior
- Clip (or cull or reject) point p if any $\mathrm{H} \bullet p<0$

Clipping \& Transformation

- Transform M (e.g. from world space to NDC)

- The plane equation is transformed with $\left(\mathrm{M}^{-1}\right)^{\mathrm{T}}$

Clipping a Point with respect to a Plane

- If $\mathrm{d}=\mathrm{H} \bullet \mathrm{p} \geq 0$

Pass through

- If $\mathrm{d}=\mathrm{H} \cdot \mathrm{p}<0$:

Clip (or cull or reject)

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$

- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Clipping against the frustum

- For each frustum plane H
- If $\mathrm{H} \cdot \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clip q to H

Result is a single segment. Why?

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$
- clip p to plane
- If $\mathrm{H} \bullet \cdot \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}>0$
- If $\mathrm{H}^{\bullet} \mathrm{p}<0$ and $\mathrm{H}^{\bullet} \mathrm{q}<0$

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$
- clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$
- clipped out

Line - Plane Intersection

- Explicit (Parametric) Line Equation
$\mathrm{L}(\mathrm{t})=\mathrm{P}_{0}+t *\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$
$\mathrm{L}(\mathrm{t})=(\mathrm{t} \quad t) * \mathrm{P}_{0}+t * \mathrm{P}_{1}$
- How do we intersect?

Insert explicit equation of line into implicit equation of plane

- Parameter t is used to interpolate associated attributes (color, normal, texture, etc.)

Is this Clipping Efficient?

- For each frustum plane H
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clip q to H
- If $\mathrm{H} \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$, clip p to H
- If $\mathrm{H} \cdot \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}>0$, pass through
- If $\mathrm{H} \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clipped out

MIT EECS 6.837, Durand and Cutler

Is this Clipping Efficient?

- For each frustum plane H
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clip q to H
- If $\mathrm{H} \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$, clip p to H
- If $\mathrm{H} \cdot \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}>0$, pass through
- If $\mathrm{H} \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clipped out

What is the problem?
The computation of the intersections, and any corresponding interpolated values is unnecessary

Can we detect this earlier?

MIT EECS 6.837, Durand and Cutler

Is this Clipping Efficient?

- For each frustum plane H
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clip q to H
- If $\mathrm{H} \cdot \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$, clip p to H
- If $\mathrm{H} \cdot \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}>0$, pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clipped out

MIT EECS 6.837, Durand and Cutler

Improving Efficiency: Outcodes

- Compute the sidedness of each vertex with respect to each bounding plane $(0=$ valid $)$
- Combine into binary outcode using logical AND

Outcode of $p \quad: 1010$
Outcode of $\mathrm{q} \quad: 0110$

Outcode of [pq] : 0010
Clipped because there is a 1

Improving Efficiency: Outcodes

- When do we fail to save computation?

Improving Efficiency: Outcodes

- It works for arbitrary primitives
- And for arbitrary dimensions

| | 01010 |
| :--- | :--- | :--- | :--- | :--- |

Questions?

Framebuffer Model

- Raster Display: 2D array of picture elements (pixels)
- Pixels individually set/cleared (greyscale, color)
- Window coordinates: pixels centered at integers

glBegin (GL LINES) glVertex3f(...) glVertex3f(...) glEnd();

Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- Antialiased Lines

2D Scan Conversion

- Geometric primitives
(point, line, polygon, circle, polyhedron, sphere...)
- Primitives are continuous; screen is discrete
- Scan Conversion: algorithms for efficient generation of the samples comprising this approximation

Brute force solution for triangles

- For each pixel
- Compute line equations at pixel center
- "clip" against the triangle

Questions?

Scan Converting 2D Line Segments

- Given:
- Segment endpoints (integers x1, y1; x2, y2)
- Identify:
- Set of pixels (x, y) to display for segment

MIT EECS 6.837, Durand and Cutler

Can we do better? Yes!

- More on polygons next week.
- Today: line rasterization

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- naive method
- Bresenham's (DDA)
- Circle Rasterization
- Antialiased Lines

Line Rasterization Requirements

- Transform continuous primitive into discrete samples
- Uniform thickness \& brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

MIT EECS 6.837, Durand and Cutler

Algorithm Design Choices

- Assume:
$-\mathrm{m}=\mathrm{dy} / \mathrm{dx}, \quad 0<\mathrm{m}<1$
- Exactly one pixel per column
- fewer \rightarrow disconnected, more \rightarrow too thick

MIT EECS 6.837 , Durand and Cutler

Naive Line Rasterization Algorithm

- Simply compute y as a function of x
- Conceptually: move vertical scan line from x 1 to x 2
- What is the expression of y as function of x ?
- Set pixel (x, round (y(x)))

Line Rasterization

- It's like marching a ray through the grid
- Also uses DDA (Digital Difference Analyzer)

MIT EECS 6.837, Durand and Cutler

Algorithm Design Choices

- Note: brightness can vary with slope
- What is the maximum variation? $\sqrt{2}$
- How could we compensate for this?
- Answer: antialiasing

MIT EECS 6.837, Durand and Cutler

Efficiency

- Computing y value is expensive

$$
y=y 1+m(x-x 1)
$$

- Observe: $y+=m$ at each x step $(m=d y / d x)$

Grid Marching vs. Line Rasterization

Ray Acceleration:
Must examine every cell the line touches

Line Rasterization:
Best discrete approximation of the line

Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment - intuitive, efficient, pixel center always within 0.5 vertically
- Same answer as naive approach

MIT EECS 6.837 , Durand and Cutler

Bresenham Step

- Which pixel to choose: E or NE?
- Choose E if segment passes below or through middle point M
- Choose NE if segment passes above M

MIT EECS 6.837, Durand and Cutler

Bresenham's Algorithm (DDA)

- Decision Function:
$\mathrm{D}(x, y)=y-m x-b$
- Initialize:

error term $e=-\mathrm{D}(x, y)$
- On each iteration:
update x : $\quad x^{\prime}=x+1$
update e : $\quad e^{\prime}=e+m$
if $(e \leq 0.5)$: $\quad y^{\prime}=y$ (choose pixel E)
if $(e>0.5): \quad y^{\prime}=y+($ choose pixel NE $) e^{\prime}=e-1$
MIT EECS 6.837 , Durand and Cutler

Bresenham's Algorithm (DDA)

- Observation:
- If we're at pixel $\mathrm{P}\left(x_{p}, y_{p}\right)$, the next pixel must be either $\mathrm{E}\left(x_{p}+1, y_{p}\right)$ or $\mathrm{NE}\left(x_{p}, y_{p}+1\right)$
- Why?

Bresenham Step

- Use decision function D to identify points underlying line L :
$\mathrm{D}(x, y)=y-m x-b$
- positive above L
- zero on L
- negative below L

$\mathrm{D}\left(p_{x} p_{y}\right)=$ vertical distance from point to line

Summary of Bresenham

- initialize x, y, e
- for $(x=\mathrm{x} 1 ; x \leq \mathrm{x} 2 ; x++)$
$-\operatorname{plot}(x, y)$
- update x, y, e

- Generalize to handle all eight octants using symmetry
- Can be modified to use only integer arithmetic

Questions?

Circle Rasterization

- Generate pixels for 2nd octant only
- Slope progresses from $0 \rightarrow-1$
- Analog of Bresenham Segment Algorithm

Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- naive method
- Bresenham's (DDA)
- Circle Rasterization
- Antialiased Lines

Circle Rasterization

- Decision Function:
$\mathrm{D}(\mathrm{x}, \mathrm{y})=x^{2}+y^{2}-\mathrm{R}^{2}$
- Initialize:
error term $\mathrm{e}=-\mathrm{D}(x, y)$
- On each iteration:

update $\mathrm{x}: \quad x^{\prime}=x+1$
update e: $\quad e^{\prime}=\mathrm{e}+2 \mathrm{x}+1$
if $(\mathrm{e} \geq 0.5): \quad y^{\prime}=y$ (choose pixel E$)$
if $(\mathrm{e}<0.5): y^{\prime}=y-1\left(\right.$ choose pixel SE), $\quad \mathrm{e}^{\prime}=\mathrm{e}+1$
MIT EECS 6.837, Durand and Cutler

Questions?

Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- naive method
- Bresenham's (DDA)
- Circle Rasterization
- Antialiased Lines

Next Week:

