The Graphics Pipeline: Projective Transformations

Last Week:

- Animation \& Quaternions
- Finite Element Simulations
- collisions, fracture, \& deformation

Schedule

- Final Project
- Post your ideas on the web page
- Meet with staff to talk about project ideas - sign up for an appointment on Friday
- Proposal due on Monday October $27^{\text {th }}$
- Friday October $24^{\text {th }}$: Assignment 5 due
- Office Hours this week:
- Tuesday after class (Rob - student center)
- Wednesday 7-9 (Patrick - student center)
- Thursday after class (Fredo - student center)
- Friday 3-5, student center (Barb - student center)

MIT EECS 6.837 , Durand and Cutler

Questions?

Today

- Review \& Schedule
- Ray Casting / Tracing vs. Scan Conversion
- The Graphics Pipeline
- Projective Transformations

What have we done so far?

- Ray Casting / Tracing
- ray/primitive intersections
- transformations
- local shading (diffuse, ambient, \rightarrow BRDFs)
- global effects (shadows, transparency, caustics, ...)

MIT EECS 6.837, Durand and Cutler

Ray Casting / Tracing

- Advantages?
- Smooth variation of normal, silhouettes
- Generality: can render anything that can be intersected with a ray
- Atomic operation, allows recursion
- Disadvantages?
- Time complexity (N objects, R pixels)
- Usually too slow for interactive applications
- Hard to implement in hardware (lacks computation coherence, must fit entire scene in memory)

How do we render interactively?

- Use the graphics hardware (the graphics pipeline), via OpenGL, MesaGL, or DirectX
- Most global effects available in ray tracing will be sacrificed, but some can be approximated.

Scan Conversion - Graphics Pipeline

- Primitives are processed one at a time
- Early stages involve analytic processing
- Sampling occurs late in the pipeline
- Minimal state required
glBegin (GL_TRIANGLES) glNormal3f(...)
glVertex3f(...) glVertex3f(...) glVertex3f(...) glEnd();

MIT EECS 6.837, Durand and Cutler

```
for every object in the scene
```

 shade the vertices
 scan convert the object to the framebuffer
 interpolate the color computed for each vertex
 remember the closest value per pixel
 glBegin (GL_TRIANGLES)
glNormal3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
glEnd();

Limitations of Scan Conversion

- Restricted to scan-convertible primitives
- Object polygonization
- Faceting, shading artifacts
- Effective resolution is hardware dependent
- No handling of shadows, reflection, transparency
- Problem of overdraw (high depth complexity)

- What if there are more triangles than pixels?

Today

- Review \& Schedule
- Ray Casting / Tracing vs. Scan Conversion
- The Graphics Pipeline
- Projective Transformations

The Graphics Pipeline

Modeling Transformations	Input: Geometric model: Description of all object, surface, and light source geometry and transformations Lighting model: Computational description of object and light properties, interaction (reflection) Synthetic Viewpoint (or Camera): Eye position and viewing frustum Raster Viewport: Pixel grid onto which image plane is mapped Output: Colors/Intensities suitable for framebuffer display (For example, 24 -bit RGB value at each pixel) MIT EECS 6.837, Durand and Cutler
$\begin{gathered} \text { Illumination } \\ \text { (Shading) } \\ \hline \end{gathered}$	
Viewing Transformation (Perspective / Orthographic)	
Clipping	
$\begin{gathered} \text { Projection } \\ \text { (to Screen Space) } \end{gathered}$	
Scan Conversion (Rasterization)	
Visibility / Display	

The Graphics Pipeline

$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Modeling } \\ \text { Transformations }\end{array} & \text { - Primitives are processed in a series } \\ \text { of stages }\end{array}\right]$

Modeling Transformations

Modeling Transformations	- 3D models defined in their own coordinate system (object space)
Illumination (Shading)	- Modeling transforms orient the
Viewing Transformation (Perspective / Orthographic)	models within a common
Clipping	ate frame (world space)
$\begin{gathered} \text { Projection } \\ \text { (to Screen Space) } \end{gathered}$	
Scan Conversion (Rasterization)	
Visibility / Display	
MIT EECS 6.837 , Durand and Cutler	

Illumination (Shading) (Lighting)

Modeling Transformations	- Vertices lit (shaded) according to material properties, surface properties (normal) and light sources - Local lighting model (Diffuse, Ambient, Phong, etc.)
Illumination (Shading)	
Viewing Transformation (Perspective / Orthographic)	
Clipping	
Projection (to Screen Space)	
Scan Conversion (Rasterization)	$\square+\frac{0}{4}+$
Visibility / Display	
	MIT EECS 6.837, Durand and Cutler

Clipping

Projection

Visibility / Display	
$\underset{\substack{\text { Madeding } \\ \text { Trasternions }}}{\text { a }}$	- Each pixel remembers the closest object (depth buffer)
$\begin{array}{\|c\|} \hline \text { Viewing Transformation } \\ \text { (Perspective / Orthographic) } \\ \hline \end{array}$	
Clipping	- Almost every step in the graphics pipeline involves a change of coordinate system. Transformations are central to understanding 3D computer graphics.
$\substack{\text { Scan Comevesion } \\ \text { RRaseraxion) }}$	
biliy Disphy	

Scan Conversion (Rasterization)

Modeling Transformations
Illumination (Shading)
Viewing Transformation

- Rasterizes objects into pixels
- Interpolate values as we go (color, depth, etc.)

MIT EECS 6.837, Durand and Cutler

Common Coordinate Systems

- Object space
- local to each object
- World space
- common to all objects
- Eye space / Camera space - derived from view frustum
- Clip space / Normalized Device Coordinates (NDC)
$-[-1,-1,-1] \rightarrow[1,1,1]$
- Screen space
- indexed according to hardware attributes

Questions?

Today

- Review \& Schedule
- Ray Casting / Tracing vs. Scan Conversion
- The Graphics Pipeline
- Projective Transformations
- Transformations \& Homogeneous Coordinates
- Orthographic \& Perspective Projections
- Canonical View Volume

Homogeneous Coordinates

- Most of the time $w=1$, and we can ignore it

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

Orthographic vs. Perspective

- Orthographic

- Perspective

Remember Transformations?

MIT EECS 6.837, Durand and Cutler

Homogeneous Visualization

- Divide by w to normalize (homogenize)
- $\mathrm{W}=0$? Point at infinity (direction)
$(0,0,1)=(0,0,2)=$.
$(7,1,1)=(14,2,2)=$
$(4,5,1)=(8,10,2)=$.

MIT EECS 6.837, Durand and Cutler

Simple Orthographic Projection

- Project all points along the z axis to the $z=0$ plane

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

MIT EECS 6.837, Durand and Cutler

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane, eyepoint at the origin:

What if the p_{z} is \leq eye $_{z}$?

Where are projections in the pipeline?

MIT EECS 6.837 , Durand and Cutler

World Space \rightarrow Eye Space

Positioning the camera

Translation + Change of orthonormal basis (Lecture 4)

- Given: coordinate frames xyz \& uvn, and point $\mathbf{p}=(x, y, z)$
- Find: $\mathbf{p}=(u, v, n)$

Change of Orthonormal Basis

$$
\left(\begin{array}{l}
u \\
v \\
n
\end{array}\right)=\left(\begin{array}{lll}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
n_{x} & n_{y} & n_{z}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where:
$u_{x}=\mathbf{x} . \mathbf{u}$
$u_{y}=\mathbf{y} . \mathbf{u}$
etc.

Normalized Device Coordinates

- Clipping is more efficient in a rectangular, axis-aligned volume: $(-1,-1,-1) \rightarrow(1,1,1) \quad$ OR $\quad(0,0,0) \rightarrow(1,1,1)$

Canonical Orthographic Projection

Normalized Device Coordinates

Orthographic

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2}{\text { right - left }} & 0 & 0 & \frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }} \\
0 & \frac{2}{\text { bottom - top }} & 0 & \frac{-(\text { bottom }+ \text { top) }}{\text { bottom }- \text { top }} \\
0 & 0 & \frac{2}{\text { far - near }} & \frac{-(\text { far }+ \text { near })}{\text { far - near }} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Canonical Perspective Projection

Perspective

$$
\left[\begin{array}{c}
x^{\prime} w \\
y^{\prime} w \\
z^{\prime} w \\
w
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 \cdot \text { near }}{\text { right }- \text { left }} & 0 & \frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }} & 0 \\
0 & \frac{2 \cdot \text { near }}{\text { bottom }- \text { top }} & \frac{- \text { (bottom }+ \text { top })}{\text { bottom }- \text { top }} & 0 \\
0 & 0 & \frac{\text { far }+ \text { near }}{\text { far - near }} & \frac{-2 \cdot \text { near } \cdot \text { far }}{\text { far }- \text { near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1 \\
0
\end{array}\right]
$$

