

Final project

First brainstorming session on Thursday
Groups of three
Proposal due Monday 10/27

- A couple of pages
- Goals
- Progression

Appointment with staff

Quaternion recap 1 (wake up)
4D representation of orientation

$$
\mathbf{q}=\{\cos (\theta / 2) ; \mathbf{v} \sin (\theta / 2)\}
$$

Inverse is $\mathbf{q}^{-1}=(\mathbf{s},-\mathbf{v})$
Multiplication rule
$\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \diamond \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)$

- Consistent with rotation composition

How do we apply rotations?
How do we interpolate?
coser Side 9 6.837 Fall 2003 2003 Manre

Quaternion Algebra

Two general quaternions are multiplied by a special rule:
$\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)$
To rotate 3D point/vector \mathbf{p} by \mathbf{q}, compute $-\mathbf{q}\{0 ; \mathbf{p}\} \mathbf{q}^{-1}$
$\rho=(x, y, z) \mathbf{q}=\{\cos (\theta / 2), 0,0, \sin (\theta / 2)\}=\{c, 0,0, s\}$
q $\{0, \mathbf{p}\}=\{c, 0, o, s\}\{0, x, y, z\}$
$=\{c .0-\mathrm{zs}, \quad \mathbf{p}+0,0,0,0, \mathrm{~s})+(0,0, \mathrm{~s}) \times \mathbf{p}\}$
$=\{-\mathrm{zs}, \mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0)\}$
$\mathbf{q}\{0, \mathbf{p}\} \mathbf{q}^{-1}=\{-z \mathrm{zs}, \mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0)\} \quad\{\mathrm{c}, 0,0,-\mathrm{s}\}$

 $=\left\{0, \quad\left(0,0,2 s^{2}\right)+c^{2} \mathbf{p}+(-\operatorname{csy}, \operatorname{csx}, 0)+(-\operatorname{csy}, \operatorname{css}, 0)+\left(s^{2} x, s^{2} y, 0\right)\right\}$ $=\left\{0, \quad\left(c^{2} x-2 c 5 y-s^{2} x, c^{2} y+2 c s x-s^{2} y, z z^{2+}+c^{2}\right)\right\}$
coser
$=\{0, \times \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta), z\}$
Hoser $=\{0, x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos$
Lecture 11 6.837 Fall 2003 3 mare

Quaternion Interpolation (velocity)
The only problem with linear interpolation (lerp) of quaternions is that it interpolates the straight line (the secant) between the two quaternions and not their spherical distance As a result, the interpolated motion does not have smooth velocity: it may speed up too much in some sections:

Spherical linear interpolation (slerp) removes this problem by interpolating along the arc lines instead of the secant lines.
$\operatorname{slerp}\left(\mathbf{q}_{0}, \mathbf{q}_{1}, t\right)=\mathbf{q}(t)=\frac{\mathbf{q}_{0} \sin ((1-t) \omega)+\mathbf{q}_{1} \sin (t \omega)}{\sin (\omega)}$,
where $\omega=\cos ^{-1}\left(\mathbf{q}_{0} \mathbf{q}_{1}\right)$
Hoser Lecture 11 \quad Slide 12 6.837 fall 2003

Quaternions

Can also be defined like complex numbers
$a+b i+c j+d k$
Multiplication rules

- ${ }^{i}=j^{2}=k^{2}=-1$
- $\mathrm{ij}=\mathrm{k}=-\mathrm{ji}$
ik
$\mathrm{ik}=\mathrm{i}=-\mathrm{kj}$
- $\mathrm{jk}=1=-\mathrm{kj}$
$-\mathrm{ki}=j=-\mathrm{ik}$
-

Fun:J ulia Sets in Quaternion space Mandelbrot set: $Z_{n+1}=Z_{n}{ }^{2}+Z_{0}$
Julia set $Z_{n+1}=Z_{n}^{2}+C$
http://alephO.clarku.edu/~djoyce/julia/explorer.html Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/

See also http://www.chaospro.de/gallery/gallery.php?cat=Anim
Hocer Lecture 11 Side 16 Slide 16 6.837 Fall 2003 Mant

Fun:J ulia Sets in Quaternion space Julia set $Z_{n+1}=Z_{n}^{2}+C$
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/ This is 4D, so we need the time dimension as well

Recap: quaternions
3 angles represented in 4D
$\mathbf{q}=\{\cos (\theta / 2) ; \mathbf{v} \sin (\theta / 2)\}$

Weird multiplication rules

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)
$$

Good interpolation using slerp

40aer 11 Slide 18

Vector Field
The flow field $\mathbf{g}(\mathbf{x}, t)$ is a vector field that defines a vector for any particle position \mathbf{x} at any time t.

How would a particle move in this vector field?

Differential Equations
The equation $\mathbf{v}=\mathbf{g}(\mathbf{x}, t)$ is a first order differential equation: $\frac{d \mathbf{x}}{d t}=\mathbf{g}(\mathbf{x}, t)$
Position is computed by integrating the differential equation:

$$
\mathbf{x}(t)=\mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{g}(\mathbf{x}, t) d t
$$

Usually, no analytical solution

Hocer Lecture 11 Slide 24 6.837 Fall 2003 Marr ${ }^{2}$

Numeric Integration

```
Instead we use numeric integration:
```

- Start at initial point $\mathbf{x}\left(t_{0}\right)$
- Step along vector field to compute the position at each time This is called an initial value problem

Hocer Lecture 11 ${ }^{\text {Slide } 25}$ 6.837 fall 2003 Manc*

Euler's Method

Simplest solution to an initial value problem.

- Starts from initial value
- Take small time steps along the flow:

$$
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \mathbf{g}(\mathbf{x}, t)
$$

Why does this work?
Consider Taylor series expansion of $\mathbf{x}(t)$

$$
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \frac{d \mathbf{x}}{d t}+\frac{\Delta t^{2}}{2} \frac{d^{2} \mathbf{x}}{d t^{2}}+.
$$

Disregarding higher-order terms and replacing the first derivative with the flow field function yields the equation for the Euler's method.

Hoser Lecture 11
Slide 26
337 Fall 2003 mare

Particle in a Force Field

What is a motion of a particle in a force field? The particle moves according to Newton's Law:

$$
\frac{d^{2} \mathbf{x}}{d t^{2}}=\frac{\mathbf{f}}{m} \quad(\mathbf{f}=m a)
$$

The mass m describes the particle's inertial properties: Heavier particles are easier to move than lighter particles.
In general, the force field $\mathbf{f}(\mathbf{x}, \mathbf{v}, t)$ may depend on the time t and particle's position \mathbf{x} and velocity \mathbf{v}

Second-Order Differential Equations Newton's Law $=>$ ordinary differential equation of $2^{\text {nd }}$ order:

$$
\frac{d^{2} \mathbf{x}(t)}{d t^{2}}=\frac{\mathbf{f}(\mathbf{x}, \mathbf{v}, t)}{m}
$$

A dever trick allows us to reuse the numeric solvers for $1^{\text {st }}$ order differential equations.
Define new phase vector \mathbf{y} :

- Concatenate position \mathbf{x} and velocity \mathbf{v}

Then construct a new $1^{\text {st-}}$ order differential equation whose solution will also solve the $2^{\text {nd }}$-order differential equation.

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{v}
\end{array}\right], \quad \frac{d \mathbf{y}}{d t}=\left[\begin{array}{l}
d \mathbf{x} / d t \\
d \mathbf{v} / d t
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v} \\
\mathbf{f} / \mathrm{m}
\end{array}\right]
$$

Hoser Lecture 11 Slide $29 \quad \quad 6.837$ Fall 2003 mare

- Midpoint (2 ${ }^{\text {nd }}$ order Runge-Kutta)

Higher order Runge-Kutta (4 $4^{\text {th }}$ order, $6^{\text {th }}$ order)

- Adams
- Adaptive Stepsize

Other Methods

Euler's method is the simplest numerical method. The error is proportional to Δt
For most cases, it is inaccurate and unstable

- It requires very small steps.

Slide 27
6.837 Fall 2003

Particle Animation

\{
$\mathbf{y}=\mathbf{y}_{0}$
$t=t_{0}$
DrawParticles (n, \mathbf{y})
while $(t!=t)$ \{
$\mathbf{f}=\operatorname{ComputeForces}(\mathbf{y}, t)$
$\mathrm{d} \mathbf{y} \mathrm{dt}=$ AssembleDerivative (\mathbf{y}, \mathbf{f})
$\{\mathbf{y}, t\}=$ ODESolverStep ($6 n, \mathbf{y}, \mathrm{~d} \mathbf{y} / \mathrm{dt}$)
DrawParticles (n, \mathbf{y})
\}
3
acoer
Lecture 11
6.837 Fall 2003

$$
\begin{aligned}
& \text { Rigid-Body Equation of Motion } \\
& \frac{d}{d t} \mathbf{y}(t)=\frac{d}{d t}\left[\begin{array}{c}
\mathbf{x}(t) \\
\mathbf{R}(t) \\
M \mathbf{v}(t) \\
\mathbf{I}(t) \boldsymbol{\omega}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}(t) \\
\omega(t) \times \mathbf{R}(t) \\
\mathbf{f}(t) \\
\mathbf{T}(t)
\end{array}\right] \\
& M \mathbf{v}(t) \rightarrow \text { linear momentum } \\
& \mathbf{I}(t) \boldsymbol{\omega}(t) \rightarrow \text { angular momentum } \\
& \text { Lonem } \quad \text { Lectre 11 }
\end{aligned}
$$

Collision Response

The mechanics of collisions are complicated
Simple model: assume that the two bodies exchange collision impulse instantaneously.

MasS-Spring system
Network of masses and springs
Express forces
Integrate
Deformation of springs simulates deformation of objects
Limages from Debunneetal. 2001
Lecture 11

How do they animate movies?

Keyframing mostly

Articulated figures, inverse kinematics
Skinning
Complex deformable skin

- Muscle, skin motion

Hierarchical controls
Smile control, eye blinking, etc
Keyframes for these higher-level control
A huge time is spent building the 3D models, its skeleton and its controls

Physical simulation for secondary motion

- Hair, cloths, water
- Particle systems for "fuzzy" objects
© OAart Lecture 11 ure 11 Slide 49 dide 49 6.837 Fall 2003 Manc*
\qquad

Final project

First brainstorming session on Thursday
Groups of three
Large programming content
Proposal due Monday 10/27

- A couple of pages

Goals

- Progression

Appointment with staff

- Render some class of object (leaves, flowers, CDs)
- Weathering

Small animation of articulated body, explosion, etc

- Visualization (explanatory, scientific)
- Game
echnique-based
- Monte-Carlo Rendering
- Finite elements/differe

Model simplification

- bacer Lecture 11 6.837 Fall 2003

HScer
Lecture 11
Side 50
6.837 Fall 2003 Manr *

Based on your ray tracer

Global illumination

- Distribution ray tracing (depth of field, motion blur, soft shadows)
- Monte-Carlo rendering
- Caustics

Appearance modeling

- General BRDFS
- Subsurface scattering

```
                        ##
```

Hocer Lecture 11 Silde 52 6.837 Fall 2003 Manr*

