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Lecture 13 6.837 Fall 2002

Computer Animation III

Quaternions

Dynamics

Some slides courtesy of 
Leonard McMillan and 
Jovan Popovic
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Recap: Euler angles
3 angles along 3 axis
Poor interpolation, lock
But used in flight simulation, etc. because natural

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf
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Assignment 5: OpenGL
Interactive previsualization

OpenGL API
Graphics hardware
Jusr send rendering commands
State machine

Solid textures
New Material subclass
Owns two Material* 
Chooses between them
“Shader tree”
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Final project
First brainstorming session on Thursday
Groups of three
Proposal due Monday 10/27

A couple of pages
Goals
Progression 

Appointment with staff

Lecture 11 Slide 5 6.837 Fall 2003

Final project
Goal-based

Simulate a visual effect 
Natural phenomena
Small animation
Game
Reconstruct an existing scene

Technique-based
Monte-Carlo Rendering
Radiosity
Fluid dynamics
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Quaternion principle
A quaternion = point on unit 3-sphere in 4D = orientation.
We can apply it to a point, to a vector, to a ray
We can convert it to a matrix

We can interpolate in 4D and project back onto sphere
How do we interpolate?
How do we project?
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Demo
From Ramamoorthi and Barr Siggraph 97
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Quaternion recap 1 (wake up)
4D representation of orientation

q = {cos(θ/2); v sin(θ/2)}

Inverse is q-1 =(s, -v)

Multiplication rule

Consistent with rotation composition

How do we apply rotations?
How do we interpolate?

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

θ

v
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Quaternion Algebra
Two general quaternions are multiplied by a special rule:

Sanity check : {cos(α/2); v sin(α/2)} {cos(β/2); v sin(β/2)} 

{cos(α/2)cos(β/2) - sin(α/2)v. sin(β/2)} v, 
cos(β/2) sin(α/2) v + cos(α/2)sin(β/2) v +v × v}

{cos(α/2)cos(β/2) - sin(α/2) sin(β/2),  
v(cos(β/2) sin(α/2) + cos(α/2) sin(β/2))}

{cos((α+β)/2),  v sin((α+β)/2) }

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

Lecture 11 Slide 11 6.837 Fall 2003

Quaternion Algebra
Two general quaternions are multiplied by a special rule:

To rotate 3D point/vector p by q, compute
q {0; p} q-1

p= (x,y,z) q={ cos(θ/2), 0,0,sin(θ/2) } = {c, 0,0,s}
q {0,p}= {c, 0, 0, s} {0, x, y, z}

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

= {c.0- zs,   cp+0(0,0,s)+ (0,0,s) × p}
= {-zs, c p + (-sy,sx,0) }

q {0,p} q -1 =  {-zs, c p + (-sy,sx,0) }    {c, 0,0,-s}

= {-zsc-(cp+(-sy,sx,0)).(0,0,-s), 
-zs(0,0,-s)+c(cp+(-sy, sx,0))+ (c p + (-sy,sx,0) ) x (0,0,-s) }

= {0,    (0,0,zs2)+c2p+(-csy, csx,0)+(-csy, csx, 0)+(s2x, s2y, 0)}

= {0,   (c2x-2csy-s2x, c2y+2csx-s2y, zs2+sc2)}

= {0, x cos(θ)-y sin(θ), x sin(θ)+y cos(θ), z }
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Quaternion Interpolation (velocity)
The only problem with linear interpolation (lerp) of 
quaternions is that it interpolates the straight line (the secant) 
between the two quaternions and not their spherical distance.  
As a result, the interpolated motion does not have smooth 
velocity: it may speed up too much in some sections:

Spherical linear interpolation (slerp) removes this problem by 
interpolating along the arc lines instead of the secant lines.

0q q1

( )tq ( )tq

keyframes lerp slerp

( ) ( )( ) ( )
( )

( )

0 1
0 1

1
0 1

sin 1 sin
slerp , , ( ) ,  

sin

where cos

t t
t t

q q
q q q

q q

ω ω
ω

ω −

− +
= =

=
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Demo
From Ramamoorthi and Barr Siggraph 97

Lecture 11 Slide 14 6.837 Fall 2003

Demo
From Ramamoorthi and Barr Siggraph 97
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Quaternions
Can also be defined like complex numbers 
a+bi+cj+dk
Multiplication rules

i2=j2=k2=-1
ij=k=-ji
jk=i=-kj
ki=j=-ik

…
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Fun:Julia Sets in Quaternion space
Mandelbrot set: Zn+1=Zn

2+Z0

Julia set Zn+1=Zn
2+C

http://aleph0.clarku.edu/~djoyce/julia/explorer.html
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/

See also http://www.chaospro.de/gallery/gallery.php?cat=Anim
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Fun:Julia Sets in Quaternion space
Julia set Zn+1=Zn

2+C
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/
This is 4D, so we need the time dimension as well
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Recap: quaternions
3 angles represented in 4D

q = {cos(θ/2); v sin(θ/2)}

Weird multiplication rules

Good interpolation using slerp

θ

v

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

( )tq

slerp
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Break: movie time
Pixar For the Bird
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Now
Dynamics

ACM© 1988 “Spacetime Constraints”
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Particle
A single particle in 2-D moving in a flow field

Position

Velocity

The flow field function dictates
particle velocity

1

2

x
x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x

1

2

,
v d
v dt
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

xv v

( )tx

1x

2x

( ),tg x

( ),t=v g x

Lecture 11 Slide 23 6.837 Fall 2003

Vector Field
The flow field g(x,t) is a vector field that defines a vector for 
any particle position x at any time t.

How would a particle move in this vector field?

1x

2x
( ),tg x
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Differential Equations
The equation v = g(x, t) is a first order differential equation:

Position is computed by integrating the differential equation:

Usually, no analytical solution

( ),
d t
dt

=
x g x

( ) ( ) ( )
0

0 ,
t

t

t t t dt= + ∫x x g x
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Numeric Integration
Instead we use numeric integration: 

Start at initial point x(t0) 
Step along vector field to compute the position at each time

This is called an initial value problem.

( )0tx

1x

2x

( )1tx

( )2tx
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Euler’s Method
Simplest solution to an initial value problem.  

Starts from initial value 
Take small time steps along the flow:

Why does this work?

( ) ( ) ( ),t t t t t+ ∆ = + ∆x x g x

Consider Taylor series expansion of x(t):

Disregarding higher-order terms and replacing the first 
derivative with the flow field function yields the equation for 
the Euler’s method.

( ) ( )
2 2

22
d t dt t t t
dt dt

∆
+ ∆ = + ∆ + +

x xx x L
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Other Methods
Euler’s method is the simplest numerical method.  
The error is proportional to     .  
For most cases, it is inaccurate and unstable 

It requires very small steps.

Other methods:
Midpoint (2nd order Runge-Kutta)
Higher order Runge-Kutta (4th order, 6th order)
Adams
Adaptive Stepsize

2t∆

1x

2x
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Particle in a Force Field
What is a motion of a particle in a force field?
The particle moves according to Newton’s Law:

( )
2

2

d ma
mdt

= =
x f f

The mass m describes the particle’s inertial properties: 
Heavier particles are easier to move than lighter particles.  

In general, the force field f(x, v, t) may depend on the time t
and particle’s position x and velocity v.
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Second-Order Differential Equations
Newton’s Law => ordinary differential equation of 2nd order:

A clever trick allows us to reuse the numeric solvers for 1st-
order differential equations.  
Define new phase vector y: 

Concatenate position x and velocity v, 

Then construct a new 1st-order differential equation whose 
solution will also solve the 2nd-order differential equation.

( ) ( )2

2

, ,d t t
mdt

=
x f x v

/
,

/ /
d dtd

dt d dt m
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x vyy
v v f
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Particle Animation
AnimateParticles(n, y0, t0, tf)
{

y = y0

t = t0
DrawParticles(n, y)
while(t != tf) {

f = ComputeForces(y, t)
dydt = AssembleDerivative(y, f)
{y, t } = ODESolverStep(6n, y, dy/dt)
DrawParticles(n, y)

}
}
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Particle Animation [Reeves et al. 1983]

Star Trek, The Wrath of Kahn [Reeves et al. 1983]
Start Trek, The Wrath of Kahn
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Particle Modeling [Reeves et al. 1983]
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Rigid-Body Dynamics
Could use particles for all points
But rigid body does not deform
Few degrees of freedom
Start with only one particle at center of mass

( )tx

( )tv ( )

( )

( )
?

?

t

t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x

y
v
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Net Force

( )tx

( )tv

( )2 tf

( )3 tf

( )1 tf

( ) ( )i
i

t t= ∑f f

)()( tf
dt

tdMv
=
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Net Torque

( )tx

( )tv
( )1

b tp

( )3
b tp

( )2
b tp

( ) ( )( ) ( )b
i i

i

t t t= − ×∑τ p x f

( )2 tf

( )3 tf

( )1 tf
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Rigid-Body Equation of Motion

( )

( )
( )
( )

( ) ( )

( )
( ) ( )

( )
( )

t t
t t td dt

M t tdt dt
t t t

ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x v
R R

y
v f

I ω τ

( )
( ) ( )

linear momentum

angular momentum

M t

t t

→

→

v

I ω
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Simulations with Collisions
Simulating motions with collisions requires 
that we detect them (collision detection) 
and fix them (collision response).

( )0ty

( )1ty

( )2ty

( )3ty
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Collision Response
The mechanics of collisions are complicated 
Simple model: assume that the two bodies exchange collision 
impulse instantaneously.

nb

pb
−v

+ = ?v
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Frictionless Collision Model

nb

pb
−v

ε = 1

ε =
1
2

ε = 0

( )ε+ −⋅ = − ⋅n nb v b v

+v
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Deformable models
Shape deforms due to contact
Discretize the problem
Animation runs with smaller time steps than rendering 
(between 1/10,000s and 1/100s)

Images from Debunne et al. 2001
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Mass-Spring system
Network of masses and springs
Express forces
Integrate
Deformation of springs simulates deformation of objects

[Dorsey 1996]

F

Images from Debunne et al. 2001
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Explicit Finite Elements
Discretize the problem 
Solve locally
Simpler but less stable than implicit

Object Finite
Elements

Independent
matricial
systemsSlide from Debunne et al. 2001

Lecture 11 Slide 45 6.837 Fall 2003

Implicit Finite Elements
Discretize the problem 
Express the interrelationship
Solve a big system
More principled than mass-spring

Object Finite
Elements

Large
matricial
systemSlide from Debunne et al. 2001
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Formally: Finite Elements
We are trying to solve a continuous problem

Deformation of all points of the object
Infinite space of functions

We project to a finite set of basis functions
E.g. piecewise linear, piecewise constant

We project the equations governing the problem
This results in a big linear system

Object Finite
Elements

Large matricial
system
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Cloth animation
Discretize cloth 
Write physical equations
Integrate
Collision detection

Image from Meyer et al. 2001
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Fluid simulation
Discretize volume of fluid

Exchanges and velocity at voxel boundary

Write Navier Stokes equations
Incompressible, etc.

Numerical integration
Finite elements, finite differences

Challenges:
Robust integration, stability
Speed
Realistic surface

Figure from Fedkiw et al. 2001

Figure from Enright et al. 2002
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How do they animate movies?
Keyframing mostly
Articulated figures, inverse kinematics
Skinning 

Complex deformable skin
Muscle, skin motion

Hierarchical controls
Smile control, eye blinking, etc. 
Keyframes for these higher-level controls

A huge time is spent building the 3D models, its skeleton and 
its controls
Physical simulation for secondary motion

Hair, cloths, water
Particle systems for “fuzzy” objects

Images from the Maya tutorial

Lecture 11 Slide 50 6.837 Fall 2003

Final project
First brainstorming session on Thursday
Groups of three
Large programming content
Proposal due Monday 10/27

A couple of pages
Goals
Progression 

Appointment with staff
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Final project
Goal-based

Render some class of object (leaves, flowers, CDs) 
Natural phenomena (plants, terrains, water)
Weathering
Small animation of articulated body, explosion, etc. 
Visualization (explanatory, scientific)
Game
Reconstruct an existing scene

Technique-based
Monte-Carlo Rendering
Radiosity
Finite elements/differences (fluid, cloth, deformable objects)
Display acceleration
Model simplification
Geometry processing
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Based on your ray tracer
Global illumination

Distribution ray tracing (depth of field, motion blur, soft shadows)
Monte-Carlo rendering
Caustics

Appearance modeling
General BRDFS
Subsurface scattering


