
1

Lecture 13 6.837 Fall 2002

Computer Animation III

Quaternions

Dynamics

Some slides courtesy of
Leonard McMillan and
Jovan Popovic

Lecture 11 Slide 2 6.837 Fall 2003

Recap: Euler angles
3 angles along 3 axis
Poor interpolation, lock
But used in flight simulation, etc. because natural

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf

Lecture 11 Slide 3 6.837 Fall 2003

Assignment 5: OpenGL
Interactive previsualization

OpenGL API
Graphics hardware
Jusr send rendering commands
State machine

Solid textures
New Material subclass
Owns two Material*
Chooses between them
“Shader tree”

Lecture 11 Slide 4 6.837 Fall 2003

Final project
First brainstorming session on Thursday
Groups of three
Proposal due Monday 10/27

A couple of pages
Goals
Progression

Appointment with staff

Lecture 11 Slide 5 6.837 Fall 2003

Final project
Goal-based

Simulate a visual effect
Natural phenomena
Small animation
Game
Reconstruct an existing scene

Technique-based
Monte-Carlo Rendering
Radiosity
Fluid dynamics

Lecture 11 Slide 6 6.837 Fall 2003

Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

()tx

()tv

2

Lecture 11 Slide 7 6.837 Fall 2003

Quaternion principle
A quaternion = point on unit 3-sphere in 4D = orientation.
We can apply it to a point, to a vector, to a ray
We can convert it to a matrix

We can interpolate in 4D and project back onto sphere
How do we interpolate?
How do we project?

Lecture 11 Slide 8 6.837 Fall 2003

Demo
From Ramamoorthi and Barr Siggraph 97

Lecture 11 Slide 9 6.837 Fall 2003

Quaternion recap 1 (wake up)
4D representation of orientation

q = {cos(θ/2); v sin(θ/2)}

Inverse is q-1 =(s, -v)

Multiplication rule

Consistent with rotation composition

How do we apply rotations?
How do we interpolate?

()()1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

θ

v

Lecture 11 Slide 10 6.837 Fall 2003

Quaternion Algebra
Two general quaternions are multiplied by a special rule:

Sanity check : {cos(α/2); v sin(α/2)} {cos(β/2); v sin(β/2)}

{cos(α/2)cos(β/2) - sin(α/2)v. sin(β/2)} v,
cos(β/2) sin(α/2) v + cos(α/2)sin(β/2) v +v × v}

{cos(α/2)cos(β/2) - sin(α/2) sin(β/2),
v(cos(β/2) sin(α/2) + cos(α/2) sin(β/2))}

{cos((α+β)/2), v sin((α+β)/2) }

()()1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

Lecture 11 Slide 11 6.837 Fall 2003

Quaternion Algebra
Two general quaternions are multiplied by a special rule:

To rotate 3D point/vector p by q, compute
q {0; p} q-1

p= (x,y,z) q={ cos(θ/2), 0,0,sin(θ/2) } = {c, 0,0,s}
q {0,p}= {c, 0, 0, s} {0, x, y, z}

()()1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

= {c.0- zs, cp+0(0,0,s)+ (0,0,s) × p}
= {-zs, c p + (-sy,sx,0) }

q {0,p} q -1 = {-zs, c p + (-sy,sx,0) } {c, 0,0,-s}

= {-zsc-(cp+(-sy,sx,0)).(0,0,-s),
-zs(0,0,-s)+c(cp+(-sy, sx,0))+ (c p + (-sy,sx,0)) x (0,0,-s) }

= {0, (0,0,zs2)+c2p+(-csy, csx,0)+(-csy, csx, 0)+(s2x, s2y, 0)}

= {0, (c2x-2csy-s2x, c2y+2csx-s2y, zs2+sc2)}

= {0, x cos(θ)-y sin(θ), x sin(θ)+y cos(θ), z }

Lecture 11 Slide 12 6.837 Fall 2003

Quaternion Interpolation (velocity)
The only problem with linear interpolation (lerp) of
quaternions is that it interpolates the straight line (the secant)
between the two quaternions and not their spherical distance.
As a result, the interpolated motion does not have smooth
velocity: it may speed up too much in some sections:

Spherical linear interpolation (slerp) removes this problem by
interpolating along the arc lines instead of the secant lines.

0q q1

()tq ()tq

keyframes lerp slerp

() ()() ()
()

()

0 1
0 1

1
0 1

sin 1 sin
slerp , , () ,

sin

where cos

t t
t t

q q
q q q

q q

ω ω
ω

ω −

− +
= =

=

3

Lecture 11 Slide 13 6.837 Fall 2003

Demo
From Ramamoorthi and Barr Siggraph 97

Lecture 11 Slide 14 6.837 Fall 2003

Demo
From Ramamoorthi and Barr Siggraph 97

Lecture 11 Slide 15 6.837 Fall 2003

Quaternions
Can also be defined like complex numbers
a+bi+cj+dk
Multiplication rules

i2=j2=k2=-1
ij=k=-ji
jk=i=-kj
ki=j=-ik

…

Lecture 11 Slide 16 6.837 Fall 2003

Fun:Julia Sets in Quaternion space
Mandelbrot set: Zn+1=Zn

2+Z0

Julia set Zn+1=Zn
2+C

http://aleph0.clarku.edu/~djoyce/julia/explorer.html
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/

See also http://www.chaospro.de/gallery/gallery.php?cat=Anim

Lecture 11 Slide 17 6.837 Fall 2003

Fun:Julia Sets in Quaternion space
Julia set Zn+1=Zn

2+C
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/
This is 4D, so we need the time dimension as well

Lecture 11 Slide 18 6.837 Fall 2003

Recap: quaternions
3 angles represented in 4D

q = {cos(θ/2); v sin(θ/2)}

Weird multiplication rules

Good interpolation using slerp

θ

v

()()1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r

()tq

slerp

4

Lecture 11 Slide 19 6.837 Fall 2003

Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

()tx

()tv

Lecture 11 Slide 20 6.837 Fall 2003

Break: movie time
Pixar For the Bird

Lecture 11 Slide 21 6.837 Fall 2003

Now
Dynamics

ACM© 1988 “Spacetime Constraints”

Lecture 11 Slide 22 6.837 Fall 2003

Particle
A single particle in 2-D moving in a flow field

Position

Velocity

The flow field function dictates
particle velocity

1

2

x
x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x

1

2

,
v d
v dt
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

xv v

()tx

1x

2x

(),tg x

(),t=v g x

Lecture 11 Slide 23 6.837 Fall 2003

Vector Field
The flow field g(x,t) is a vector field that defines a vector for
any particle position x at any time t.

How would a particle move in this vector field?

1x

2x
(),tg x

Lecture 11 Slide 24 6.837 Fall 2003

Differential Equations
The equation v = g(x, t) is a first order differential equation:

Position is computed by integrating the differential equation:

Usually, no analytical solution

(),
d t
dt

=
x g x

() () ()
0

0 ,
t

t

t t t dt= + ∫x x g x

5

Lecture 11 Slide 25 6.837 Fall 2003

Numeric Integration
Instead we use numeric integration:

Start at initial point x(t0)
Step along vector field to compute the position at each time

This is called an initial value problem.

()0tx

1x

2x

()1tx

()2tx

Lecture 11 Slide 26 6.837 Fall 2003

Euler’s Method
Simplest solution to an initial value problem.

Starts from initial value
Take small time steps along the flow:

Why does this work?

() () (),t t t t t+ ∆ = + ∆x x g x

Consider Taylor series expansion of x(t):

Disregarding higher-order terms and replacing the first
derivative with the flow field function yields the equation for
the Euler’s method.

() ()
2 2

22
d t dt t t t
dt dt

∆
+ ∆ = + ∆ + +

x xx x L

Lecture 11 Slide 27 6.837 Fall 2003

Other Methods
Euler’s method is the simplest numerical method.
The error is proportional to .
For most cases, it is inaccurate and unstable

It requires very small steps.

Other methods:
Midpoint (2nd order Runge-Kutta)
Higher order Runge-Kutta (4th order, 6th order)
Adams
Adaptive Stepsize

2t∆

1x

2x

Lecture 11 Slide 28 6.837 Fall 2003

Particle in a Force Field
What is a motion of a particle in a force field?
The particle moves according to Newton’s Law:

()
2

2

d ma
mdt

= =
x f f

The mass m describes the particle’s inertial properties:
Heavier particles are easier to move than lighter particles.

In general, the force field f(x, v, t) may depend on the time t
and particle’s position x and velocity v.

Lecture 11 Slide 29 6.837 Fall 2003

Second-Order Differential Equations
Newton’s Law => ordinary differential equation of 2nd order:

A clever trick allows us to reuse the numeric solvers for 1st-
order differential equations.
Define new phase vector y:

Concatenate position x and velocity v,

Then construct a new 1st-order differential equation whose
solution will also solve the 2nd-order differential equation.

() ()2

2

, ,d t t
mdt

=
x f x v

/
,

/ /
d dtd

dt d dt m
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x vyy
v v f

Lecture 11 Slide 30 6.837 Fall 2003

Particle Animation
AnimateParticles(n, y0, t0, tf)
{

y = y0

t = t0
DrawParticles(n, y)
while(t != tf) {

f = ComputeForces(y, t)
dydt = AssembleDerivative(y, f)
{y, t } = ODESolverStep(6n, y, dy/dt)
DrawParticles(n, y)

}
}

6

Lecture 11 Slide 31 6.837 Fall 2003

Particle Animation [Reeves et al. 1983]

Star Trek, The Wrath of Kahn [Reeves et al. 1983]
Start Trek, The Wrath of Kahn

Lecture 11 Slide 32 6.837 Fall 2003

Particle Modeling [Reeves et al. 1983]

Lecture 11 Slide 33 6.837 Fall 2003

Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

()tx

()tv

Lecture 11 Slide 34 6.837 Fall 2003

Rigid-Body Dynamics
Could use particles for all points
But rigid body does not deform
Few degrees of freedom
Start with only one particle at center of mass

()tx

()tv ()

()

()
?

?

t

t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x

y
v

Lecture 11 Slide 35 6.837 Fall 2003

Net Force

()tx

()tv

()2 tf

()3 tf

()1 tf

() ()i
i

t t= ∑f f

)()(tf
dt

tdMv
=

Lecture 11 Slide 36 6.837 Fall 2003

Net Torque

()tx

()tv
()1

b tp

()3
b tp

()2
b tp

() ()() ()b
i i

i

t t t= − ×∑τ p x f

()2 tf

()3 tf

()1 tf

7

Lecture 11 Slide 37 6.837 Fall 2003

Rigid-Body Equation of Motion

()

()
()
()

() ()

()
() ()

()
()

t t
t t td dt

M t tdt dt
t t t

ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x v
R R

y
v f

I ω τ

()
() ()

linear momentum

angular momentum

M t

t t

→

→

v

I ω

Lecture 11 Slide 38 6.837 Fall 2003

Simulations with Collisions
Simulating motions with collisions requires
that we detect them (collision detection)
and fix them (collision response).

()0ty

()1ty

()2ty

()3ty

Lecture 11 Slide 39 6.837 Fall 2003

Collision Response
The mechanics of collisions are complicated
Simple model: assume that the two bodies exchange collision
impulse instantaneously.

nb

pb
−v

+ = ?v

Lecture 11 Slide 40 6.837 Fall 2003

Frictionless Collision Model

nb

pb
−v

ε = 1

ε =
1
2

ε = 0

()ε+ −⋅ = − ⋅n nb v b v

+v

Lecture 11 Slide 41 6.837 Fall 2003

Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

()tx

()tv

Lecture 11 Slide 42 6.837 Fall 2003

Deformable models
Shape deforms due to contact
Discretize the problem
Animation runs with smaller time steps than rendering
(between 1/10,000s and 1/100s)

Images from Debunne et al. 2001

8

Lecture 11 Slide 43 6.837 Fall 2003

Mass-Spring system
Network of masses and springs
Express forces
Integrate
Deformation of springs simulates deformation of objects

[Dorsey 1996]

F

Images from Debunne et al. 2001

Lecture 11 Slide 44 6.837 Fall 2003

Explicit Finite Elements
Discretize the problem
Solve locally
Simpler but less stable than implicit

Object Finite
Elements

Independent
matricial
systemsSlide from Debunne et al. 2001

Lecture 11 Slide 45 6.837 Fall 2003

Implicit Finite Elements
Discretize the problem
Express the interrelationship
Solve a big system
More principled than mass-spring

Object Finite
Elements

Large
matricial
systemSlide from Debunne et al. 2001

Lecture 11 Slide 46 6.837 Fall 2003

Formally: Finite Elements
We are trying to solve a continuous problem

Deformation of all points of the object
Infinite space of functions

We project to a finite set of basis functions
E.g. piecewise linear, piecewise constant

We project the equations governing the problem
This results in a big linear system

Object Finite
Elements

Large matricial
system

Lecture 11 Slide 47 6.837 Fall 2003

Cloth animation
Discretize cloth
Write physical equations
Integrate
Collision detection

Image from Meyer et al. 2001

Lecture 11 Slide 48 6.837 Fall 2003

Fluid simulation
Discretize volume of fluid

Exchanges and velocity at voxel boundary

Write Navier Stokes equations
Incompressible, etc.

Numerical integration
Finite elements, finite differences

Challenges:
Robust integration, stability
Speed
Realistic surface

Figure from Fedkiw et al. 2001

Figure from Enright et al. 2002

9

Lecture 11 Slide 49 6.837 Fall 2003

How do they animate movies?
Keyframing mostly
Articulated figures, inverse kinematics
Skinning

Complex deformable skin
Muscle, skin motion

Hierarchical controls
Smile control, eye blinking, etc.
Keyframes for these higher-level controls

A huge time is spent building the 3D models, its skeleton and
its controls
Physical simulation for secondary motion

Hair, cloths, water
Particle systems for “fuzzy” objects

Images from the Maya tutorial

Lecture 11 Slide 50 6.837 Fall 2003

Final project
First brainstorming session on Thursday
Groups of three
Large programming content
Proposal due Monday 10/27

A couple of pages
Goals
Progression

Appointment with staff

Lecture 11 Slide 51 6.837 Fall 2003

Final project
Goal-based

Render some class of object (leaves, flowers, CDs)
Natural phenomena (plants, terrains, water)
Weathering
Small animation of articulated body, explosion, etc.
Visualization (explanatory, scientific)
Game
Reconstruct an existing scene

Technique-based
Monte-Carlo Rendering
Radiosity
Finite elements/differences (fluid, cloth, deformable objects)
Display acceleration
Model simplification
Geometry processing

Lecture 11 Slide 52 6.837 Fall 2003

Based on your ray tracer
Global illumination

Distribution ray tracing (depth of field, motion blur, soft shadows)
Monte-Carlo rendering
Caustics

Appearance modeling
General BRDFS
Subsurface scattering

