

Debugging	
Debug all sub-parts as you write them	
Print as much information as possible	
Use simple test cases	
When stuck, use step-by-step debugging	
Lecture 11	

Grid acceleration

Debug all these steps:

- Sphere rasterization
- Ray initialization
- Marching
- Object insertion
- Acceleration

Lecture 11
Slide 4
6.837 Fall 2003 Monet

Final project

First brainstorming session on Thursday
Groups of three
Proposal due Monday 10/27

- A couple of pages
- Goals
- Progression

Appointment with staff

Review from Thursday

Interpolation

- Splines

Articulated bodies

- Forward kinematics
- Inverse Kinematics
- Optimization
- Gradient descent
- Following the steepest slope
- Lagrangian multipliers
- Turn optimization with constraints into no constraints

Interpolating Orientations in 3-D Rotation matrices Given rotation matrices M_{i} and time t_{i}, find $M(t)$ such that $M\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{M}_{\mathrm{i}}$.				
2	\underbrace{y}	M	$v_{x} u_{y} u_{z}$	
Whay Lecture 11 Slide 9 ${ }^{\text {a }}$				

Flawed Solution

Interpolate each entry independently
Example: M_{0} is identity and M_{1} is 90° around x-axis
Interpolate $\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5\end{array}\right]$
Is the result a rotation matrix?
NO:
For example, RR^{\top} does not equal identity.
This interpolation does not preserve rigidity (angles and lengths)

40any	Lecture 11	Slide 10	6.837 Fall 2003	Manrat

Euler Angles

An Euler angle is a rotation about a single axis. Any orientation can be described composing three rotation around each coordinate axis.

Roll, pitch and yaw

Interpolating Euler Angles

Natural orientation representation:

3 angles for 3 degrees of freedom

Unnatural interpolation:

A rotation of 90° first around Z and then around Y

$$
=120^{\circ} \text { around }(1,1,1) .
$$

But 30° around Z then Y
differs from 40° around (1, 1, 1).

6.837 Fall 2003 Manr th
Demo
By Sobeit void
from
http://www.gamedev.net/reference/programming/features/qpowers/page7.asp

See also
http://www.cgl.uwaterloo.ca/GALLERY/image_html/gimbal.jpg.html
Leaen
Lecture 11

Euler angles in the real world

Apollo inertial measurement unit
To prevent lock, they had to add a fourth Gimbal!

Overview

Solution: Quaternion Interpolation

Interpolate orientation on the unit sphere

By analogy: 1-, 2-, 3-DOF rotations as constrained points on 1, 2, 3-spheres

Lecture 11

1D sphere and complex plane

Interpolate orientation in 2D
1 angle

- But messy because modulo 2π

Use interpolation in (complex) 2D plane
Orientation = complex argument of the number

400
Lecture 11
Slide 20
6.837 Fall 2003

Menres

2-angle orientation

Embed 2-sphere in 3D

2 angles

- Messy because modulo 2π and pole

Use linear interpolation in 3D space
Orientation = projection onto the sphere
Same velocity correction

Quaternions

Quaternions are unit vectors on 3-sphere (in 4D) Right-hand rotation of θ radians about \mathbf{v} is
$\mathbf{q}=\{\cos (\theta / 2) ; \mathbf{v} \sin (\theta / 2)\}$

- Often noted (s, \mathbf{v})
- What if we use $-\mathbf{v}$?

What is the quaternion of Identity rotation?
-
Is there exactly one quaternion per rotation?
-

What is the inverse $\mathbf{q}^{-\mathbf{1}}$ of quaternion $\mathbf{q}\{a, b, c, d\}$?
-
40acy
Lecture 11
Slide 24
6.837 Fall 2003

Quaternion Algebra

Two general quaternions are multiplied by a special rule:

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)
$$

Sanity check : $\{\cos (\alpha / 2) ; \mathbf{v} \sin (\alpha / 2)\}\{\cos (\beta / 2) ; \mathbf{v} \sin (\beta / 2)\}$

4-8ary
Lecture 11
Slide 26 6.837 Fall 2003

Quaternion Algebra

Two general quaternions are multiplied by a special rule:

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)
$$

Sanity check : $\{\cos (\alpha / 2) ; \mathbf{v} \sin (\alpha / 2)\}\{\cos (\beta / 2) ; \mathbf{v} \sin (\beta / 2)\}$
$\{\cos (\alpha / 2) \cos (\beta / 2)-\sin (\alpha / 2) \mathbf{v} \cdot \sin (\beta / 2)\} \mathbf{v}$,
$\cos (\beta / 2) \sin (\alpha / 2) \mathbf{v}+\cos (\alpha / 2) \sin (\beta / 2) \mathbf{v}+\mathbf{v} \times \mathbf{v}\}$
$\{\cos (\alpha / 2) \cos (\beta / 2)-\sin (\alpha / 2) \sin (\beta / 2)$,
$\mathbf{v}(\cos (\beta / 2) \sin (\alpha / 2)+\cos (\alpha / 2) \sin (\beta / 2))\}$
$\{\cos ((\alpha+\beta) / 2), \mathbf{v} \sin ((\alpha+\beta) / 2)\}$
*)0any
Lecture 11
Slide 27
6.837 Fall 2003

Quaternion Algebra

Two general quaternions are multiplied by a special rule:

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{V}_{1} \cdot \vec{V}_{2}\right), s_{1} \vec{V}_{2}+s_{2} \vec{V}_{1}+\vec{V}_{1} \times \vec{V}_{2}\right)
$$

To rotate 3D point/vector \mathbf{p} by \mathbf{q}, compute

$$
=\mathbf{q}\{0 ; \mathbf{p}\} \mathbf{q}^{-1}
$$

$p=(x, y, z) \quad \mathbf{q}=\{\cos (\theta / 2), 0,0, \sin (\theta / 2)\}=\{c, 0,0, s\}$
$\mathbf{q}\{0, \mathbf{p}\}=\{c, 0,0, s\}\{0, x, y, z\}$
$=\{\mathrm{c} .0-\mathrm{zs}, \quad \mathrm{c} \mathbf{p}+0(0,0, \mathrm{~s})+(0,0, \mathrm{~s}) \times \mathbf{p}\}$
$=\{-\mathrm{zs}, \mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0)\}$
$\mathbf{q}\{0, \mathbf{p}\} \mathbf{q}^{-1}=\{-\mathrm{zs}, \mathrm{c} \mathbf{p}+(-\mathrm{sy}, \mathrm{sx}, 0)\} \quad\{\mathrm{c}, 0,0,-\mathrm{s}\}$
$=\{-z s c-(c p+(-s y, s x, 0)) \cdot(0,0,-s)$,
$-z s(0,0,-s)+c(c \mathbf{p}+(-s y, s x, 0))+(c \mathbf{p}+(-s y, s x, 0)) x(0,0,-s)\}$
$=\left\{0, \quad\left(0,0, z^{2}\right)+c^{2} \mathbf{p}+(-\operatorname{csy}, \operatorname{csx}, 0)+(-\operatorname{csy}, \operatorname{csx}, 0)+\left(s^{2} x, s^{2} y, 0\right)\right\}$
$=\left\{0, \quad\left(c^{2} x-2 \operatorname{cs} y-s^{2} x, c^{2} y+2 \operatorname{cs} x-s^{2} y, s^{2+} c^{2}\right)\right\}$
$=\{0, x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta), z\}$
4 OAOH
Lecture $11 \quad$ Slide $29 \quad 6.837$ Fall 2003

Quaternion recap 1 (wake up)
4 D representation of orientation
$\mathbf{q}=\{\cos (\theta / 2) ; \mathbf{v} \sin (\theta / 2)\}$
Inverse is $\mathbf{q}^{\mathbf{- 1}}=(\mathrm{s},-\mathbf{v})$
Multiplication rule

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} S_{2}-\left(\vec{V}_{1} \cdot \vec{V}_{2}\right), s_{1} \vec{V}_{2}+S_{2} \vec{V}_{1}+\vec{V}_{1} \times \vec{V}_{2}\right)
$$

- Consistent with rotation composition

> How do we apply rotations? How do we interpolate?

40 Aey
Lecture 11
Slide 28
6.837 Fall 2003

Quaternion Algebra

Two general quaternions are multiplied by a special rule: $\mathbf{q}_{1} \mathbf{q}_{2}=\left(s_{1} s_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right), s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)$

To rotate 3D point/vector \mathbf{p} by \mathbf{q}, compute

- q $\{0 ; \mathbf{p}\}$ q $^{-1}$

Quaternions are associative:

- ($\left.\mathbf{q}^{1} \mathbf{q}^{2}\right) \mathbf{q}^{3}=\mathbf{q}^{1}\left(\mathbf{q}^{2} \mathbf{q}^{3}\right)$

But not commutative:

$$
=\mathbf{q} 1 \quad \mathbf{q} 2 \neq \mathbf{q} 2 \quad \mathbf{q} 1
$$

* Bater

Lecture 11
Slide 30
6.837 Fall 2003

Quaternion Interpolation (velocity)

The only problem with linear interpolation (lerp) of quaternions is that it interpolates the straight line (the secant) between the two quaternions and not their spherical distance As a result, the interpolated motion does not have smooth velocity: it may speed up too much in some sections:

keyframes

Spherical linear interpolation (slerp) removes this problem by interpolating along the arc lines instead of the secant lines.

Demo
From Ramamoorthi and Barr Siggraph 97

Quaternions

Can also be defined like complex numbers
a+bi+cj+dk
Multiplication rules

- $i^{2}=j^{2}=k^{2}=-1$
- $\mathrm{ij}=\mathrm{k}=-\mathrm{ji}$
- $\mathrm{jk}=\mathrm{i}=-\mathrm{kj}$
- $k i=j=-i k$
...

Lecture 11
slide 35
6.837 Fall 2003 Menre

Quaternion Interpolation

Higher-order interpolations: must stay on sphere See Shoemake paper for:

- Matrix equivalent of composition
- Details of higher-order interpolation
- More of underlying theory

Problems

- No notion of favored direction (e.g. up for camera)
- No notion of multiple rotations, needs more key points

Demo
From Ramamoorthi and Barr Siggraph 97

Fun:Julia Sets in Quaternion space

Mandelbrot set: $Z_{n+1}=Z_{n}{ }^{2}+Z_{0}$
Julia set $Z_{n+1}=Z_{n}{ }^{2}+C$
http://aleph0.clarku.edu/~djoyce/julia/explorer.html
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/

See also http://www.chaospro.de/gallery/gallery.php?cat=Anim
Lecture $11 \quad$ Slide $36 \quad$ 6.837 Fall 2003 Atrare

Break: movie time

Pixar For the Bird

4 Bacer
Lecture 11
Slide 40
6.837 Fall 2003

Mones

