

Flawed Solution								
Interpolate each entry independently Example: M_0 is identity and M_1 is 90° around x-axis								
Interpolate ([1 0 0 1 0 0	0 0 1 0 0	0 0 -1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	1 0 0 0.5 0 -0.5	0 0.5 0.5]		
Is the result a rotation matrix?								
NO: For example, RR ^T does not equal identity. This interpolation does not preserve rigidity (angles and lengths)								
Lecture	11	Slic	le 10	6	.837 Fall 2003	Henr o		

Demo By Sobeit void from http://www.gamedev.net/reference/programming/features/qpowers/page7.asp See also http://www.cgl.uwaterloo.ca/GALLERY/image_html/gimbal.jpg.html

Quaternion Interpolation (velocity)						
The only problem with linear interpolation (lerp) of quaternions is that it interpolates the straight line (the secant) between the two quaternions and not their spherical distance. As a result, the interpolated motion does not have smooth velocity: it may speed up too much in some sections:						
$ \mathbf{q}(t) = \mathbf{q}(t) $						
go g						
keyframes lerp slerp						
Spherical linear interpolation (slerp) removes this problem by interpolating along the arc lines instead of the secant lines.						
slerp $(\mathbf{q}_0, \mathbf{q}_1, t) = \mathbf{q}(t) = \frac{\mathbf{q}_0 \sin((1-t)\omega) + \mathbf{q}_1 \sin(t\omega)}{\sin(\omega)}$,						
where $\omega = \cos^{-1}(\mathbf{q}_0 \Box \mathbf{q}_1)$						

(Quaternions						
a+bi+cj Multiplic	+dk tation rules ² =k ² =-1 <=-ji i=-kj	complex numbers					
4 8 sec	Lecture 11	Slide 35	6.837 Fall 2003	Hanr +			

