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Lecture 13 6.837 Fall 2002

Computer Animation II

Orientation 
interpolation

Dynamics

Some slides courtesy of 
Leonard McMillan and 
Jovan Popovic
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Review from Thursday
Interpolation

Splines

Articulated bodies
Forward kinematics
Inverse Kinematics
Optimization

Gradient descent

Following the steepest slope
Lagrangian multipliers

Turn optimization with constraints into no constraints
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Debugging
Debug all sub-parts as you write them

Print as much information as possible

Use simple test cases

When stuck, use step-by-step debugging
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Grid acceleration
Debug all these steps:

Sphere rasterization
Ray initialization
Marching
Object insertion
Acceleration
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Final project
First brainstorming session on Thursday
Groups of three
Proposal due Monday 10/27

A couple of pages
Goals
Progression 

Appointment with staff
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Computer-Assisted Animation
Keyframing 

automate the inbetweening
good control
less tedious
creating a good animation

still requires considerable skill
and talent

Procedural animation
describes the motion algorithmically
express animation as a function 

of small number of parameteres
Example: a clock with second, minute and hour hands

hands should rotate together
express the clock motions in terms of a “seconds” variable
the clock is animated by varying the seconds parameter

Example 2: A bouncing ball
Abs(sin(ωt+θ0))*e-kt

ACM © 1987 “Principles of traditional animation 
applied to 3D computer animation”
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Computer-Assisted Animation
Physically Based Animation

Assign physical properties to objects 
(masses, forces, inertial properties) 

Simulate physics by solving equations
Realistic but difficult to control

Motion Capture
Captures style, subtle nuances and realism
You must observe someone do something

ACM© 1988 “Spacetime Constraints”
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv

Lecture 11 Slide 9 6.837 Fall 2003

Interpolating Orientations in 3-D
Rotation matrices
Given rotation matrices Mi and time ti, find M(t) such that 
M(ti)=Mi.
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Flawed Solution
Interpolate each entry independently
Example: M0 is identity and M1 is 90o around x-axis

Is the result a rotation matrix?

1 0 0 1 0 0 1 0 0
Interpolate ( 0 1 0 , 0 0 1 ) 0 0.5 0.5

0 0 1 0 1 0 0 0.5 0.5

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

NO: 
For example, RRT does not equal identity.  
This interpolation does not preserve rigidity 
(angles and lengths)
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3D rotations
How many degrees of freedom for 3D orientations?

3 degrees of freedom:

e.g. direction of rotation and angle

Or 3 Euler angles
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Euler Angles
An Euler angle is a rotation about a single axis.  Any 
orientation can be described composing three rotation around 
each coordinate axis.  

Roll, pitch and yaw

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf
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Natural orientation representation: 
3 angles for 3 degrees of freedom

Unnatural interpolation: 
A rotation of 90o first around Z and then around Y 

= 120o around (1, 1, 1). 
But 30o around Z then Y 

differs from 40o around (1, 1, 1).

Interpolating Euler Angles
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Gimbal lock
Gimbal lock: two or more axis align resulting  in a loss of 
rotation degrees of freedom. 

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf
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Demo
By Sobeit void
from 
http://www.gamedev.net/reference/programming/features/qpowers/page7.asp

See also
http://www.cgl.uwaterloo.ca/GALLERY/image_html/gimbal.jpg.html
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Euler angles in the real world
Apollo inertial measurement unit
To prevent lock, they had to add a fourth Gimbal!

http://www.hq.nasa.gov/office/pao/History/alsj/gimbals.html
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Recap: Euler angles
3 angles along 3 axis
Poor interpolation, lock
But used in flight simulation, etc. because natural

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Solution: Quaternion Interpolation
Interpolate orientation on the unit sphere

By analogy: 1-, 2-, 3-DOF rotations as constrained points on 1, 
2, 3-spheres
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1D sphere and complex plane
Interpolate orientation in 2D
1 angle

But messy because modulo 2π

Use interpolation in (complex) 2D plane
Orientation = complex argument of the number

θ0

θ1
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Velocity issue & slerp
linear interpolation (lerp) in the plane interpolates the straight 
line between the two orientations and not their spherical 
distance.  
=> The interpolated motion does not have uniform velocity: 
it may speed up too much:

( ) ( )( ) ( )
( )

( )

0 1
0 1

1
0 1

sin 1 sin
slerp , , ( ) ,  

sin

where cos

t t
t t

q q
q q q

q q

ω ω
ω

ω −

− +
= =

= �

0q q1

( )tq ( )tq

keyframes lerp slerp

Solution: Spherical linear interpolation (slerp): 
interpolate along the arc lines by adding a sine term.

( ) ( )0 1 0 1lerp , , ( ) 1t t t tq q q q q= = − +
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2-angle orientation
Embed 2-sphere in 3D
2 angles

Messy because modulo 2π and pole

Use linear interpolation in 3D space
Orientation = projection onto the sphere
Same velocity correction
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3 angles
Use the same principle

interpolate in higher-dimensional space
Project back to unit sphere

Probably need the 3-sphere embedded in 4D
More complex, harder to visualize
Use the so-called Quaternions

Due to Hamilton (1843); also Shoemake, Siggraph '85
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Quaternions
Quaternions are unit vectors on 3-sphere (in 4D)
Right-hand rotation of θ radians about v is
q = {cos(θ/2); v sin(θ/2)}

Often noted (s, v)
What if we use –v ?

What is the quaternion of Identity rotation?

Is there exactly one quaternion per rotation?

What is the inverse q-1 of quaternion q {a, b, c, d}?

θ

v
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Quaternions
Quaternions are unit vectors on 3-sphere (in 4D)
Right-hand rotation of θ radians about v is
q = {cos(θ/2); v sin(θ/2)}

Often noted (s, v)
Also rotation of –θ around -v

What is the quaternion of Identity rotation?
qi = {1; 0; 0; 0}

Is there exactly one quaternion per rotation?
No, q={cos(θ/2); v sin(θ/2)} is the same rotation as 
-q={cos((θ+2π)/2); v sin((θ+2π)/2)} 
Antipodal on the quaternion sphere

What is the inverse q-1 of quaternion q {a, b, c, d}?
{a, -b, -c, -d}

θ

v
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Quaternion Algebra
Two general quaternions are multiplied by a special rule:

Sanity check : {cos(α/2); v sin(α/2)} {cos(β/2); v sin(β/2)} 

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�
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Quaternion Algebra
Two general quaternions are multiplied by a special rule:

Sanity check : {cos(α/2); v sin(α/2)} {cos(β/2); v sin(β/2)} 

{cos(α/2)cos(β/2) - sin(α/2)v. sin(β/2)} v, 
cos(β/2) sin(α/2) v + cos(α/2)sin(β/2) v +v × v}

{cos(α/2)cos(β/2) - sin(α/2) sin(β/2),  
v(cos(β/2) sin(α/2) + cos(α/2) sin(β/2))}

{cos((α+β)/2),  v sin((α+β)/2) }

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�

Lecture 11 Slide 28 6.837 Fall 2003

Quaternion recap 1 (wake up)
4D representation of orientation

q = {cos(θ/2); v sin(θ/2)}

Inverse is q-1 =(s, -v)

Multiplication rule

Consistent with rotation composition

How do we apply rotations?
How do we interpolate?

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�

θ

v
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Quaternion Algebra
Two general quaternions are multiplied by a special rule:

To rotate 3D point/vector p by q, compute
q {0; p} q-1

p= (x,y,z) q={ cos(θ/2), 0,0,sin(θ/2) } = {c, 0,0,s}
q {0,p}= {c, 0, 0, s} {0, x, y, z}

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�

= {c.0- zs,   cp+0(0,0,s)+ (0,0,s) × p}
= {-zs, c p + (-sy,sx,0) }

q {0,p} q -1 =  {-zs, c p + (-sy,sx,0) }    {c, 0,0,-s}

= {-zsc-(cp+(-sy,sx,0)).(0,0,-s), 
-zs(0,0,-s)+c(cp+(-sy, sx,0))+ (c p + (-sy,sx,0) ) x (0,0,-s) }

= {0,    (0,0,zs2)+c2p+(-csy, csx,0)+(-csy, csx, 0)+(s2x, s2y, 0)}

= {0,   (c2x-2csy-s2x, c2y+2csx-s2y, zs2+sc2)}

= {0, x cos(θ)-y sin(θ), x sin(θ)+y cos(θ), z }
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Quaternion Algebra
Two general quaternions are multiplied by a special rule:

To rotate 3D point/vector p by q, compute
q {0; p} q-1

Quaternions are associative:
(q1  q2)  q3 = q1  (q2  q3)

But not commutative:

q1  q2 ≠ q2  q1

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�
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Quaternion Interpolation (velocity)
The only problem with linear interpolation (lerp) of 
quaternions is that it interpolates the straight line (the secant) 
between the two quaternions and not their spherical distance.  
As a result, the interpolated motion does not have smooth 
velocity: it may speed up too much in some sections:

Spherical linear interpolation (slerp) removes this problem by 
interpolating along the arc lines instead of the secant lines.

0q q1

( )tq ( )tq

keyframes lerp slerp

( ) ( )( ) ( )
( )

( )

0 1
0 1

1
0 1

sin 1 sin
slerp , , ( ) ,  

sin

where cos

t t
t t

q q
q q q

q q

ω ω
ω

ω −

− +
= =

= �
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Quaternion Interpolation
Higher-order interpolations: must stay on sphere
See Shoemake paper for:

Matrix equivalent of composition
Details of higher-order interpolation
More of underlying theory

Problems
No notion of favored direction (e.g. up for camera)
No notion of multiple rotations, needs more key points
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Demo
From Ramamoorthi and Barr Siggraph 97
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Demo
From Ramamoorthi and Barr Siggraph 97
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Quaternions
Can also be defined like complex numbers 
a+bi+cj+dk
Multiplication rules

i2=j2=k2=-1
ij=k=-ji
jk=i=-kj
ki=j=-ik

…
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Fun:Julia Sets in Quaternion space
Mandelbrot set: Zn+1=Zn

2+Z0

Julia set Zn+1=Zn
2+C

http://aleph0.clarku.edu/~djoyce/julia/explorer.html
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/

See also http://www.chaospro.de/gallery/gallery.php?cat=Anim



7

Lecture 11 Slide 37 6.837 Fall 2003

Fun:Julia Sets in Quaternion space
Julia set Zn+1=Zn

2+C
Do the same with Quaternions!
Rendered by Skal (Pascal Massimino) http://skal.planet-d.net/
This is 4D, so we need the time dimension as well
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Recap: quaternions
3 angles represented in 4D

q = {cos(θ/2); v sin(θ/2)}

Weird multiplication rules

Good interpolation using slerp

θ

v

( )( )1 2 1 2 1 2 1 2 2 1 1 2,s s v v s v s v v vq q = − + + ×
r r r r r r
�

( )tq

slerp
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Overview
Interpolation of rotations, quaternions

Euler angles

Quaternions

Dynamics

Particles

Rigid body

Deformable objects

( )tx

( )tv
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Break: movie time
Pixar For the Bird


