

Overview

Hermite Splines
Keyframing
Traditional Principles

Articulated Models
Forward Kinematics
Inverse Kinematics
Optimization
Differential Constraints

Keyframing

Describe motion of objects as a function of time from a set of key object positions. In short, compute the inbetween frames.

4-Baer
Lecture 10
Slide 6
6.837 Fall 2003

Interpolating Positions

Given positions: $\left(x_{i}, y_{i}, t_{i}\right), i=0, \ldots, n$
find curve $\boldsymbol{C}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ such that $\boldsymbol{C}\left(t_{i}\right)=\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$

Lecture 10 Slide 7
6.837 Fall 2003

Polynomial Interpolation

An n-degree polynomial can interpolate any $n+1$ points. The Lagrange formula gives the $n+1$ coefficients of an n-degree polynomial that interpolates $\mathrm{n}+1$ points. The resulting interpolating polynomials are called Lagrange polynomials. On the previous slide, we saw the Lagrange formula for $\mathrm{n}=1$.
6.837 Fall 2003

Spline Interpolation

Lagrange polynomials of small degree are fine but high degree polynomials are too wiggly.
Spline (piecewise cubic polynomial) interpolation produces nicer interpolation.

Linear Interpolation

Simple problem: linear interpolation between first two points assuming $t_{0}=0$ and $t_{1}=1: \quad x(t)=x_{0}(1-t)+x_{1} t$
The x -coordinate for the complete curve in the figure:

$$
x(t)=\left\{\begin{array}{ll}
\frac{t_{1}-t}{t_{1}-t_{0}} x_{0}+\frac{t-t_{0}}{t_{1}-t_{0}} x_{1}, t \in\left[t_{0}, t_{1}\right) \\
\frac{t_{2}-t}{t_{2}-t_{1}} x_{1}+\frac{t-t_{1}}{t_{2}-t_{1}} x_{2}, t \in\left[t_{1}, t_{2}\right]
\end{array} \quad\right. \text { Derivation? }
$$

* 6 OAF

Lecture 10
Slide 8
6.837 Fall 2003

Menes

Spline Interpolation

Lagrange polynomials of small degree are fine but high degree polynomials are too wiggly.

How many n-degree polynomials interpolate $n+1$ points?
Whay Lecture 10 Slide $10 \quad 6.837$ Fall 2003

Spline Interpolation

A cubic polynomial between each pair of points:

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}
$$

Four parameters (degrees of freedom) for each spline segment.
Number of parameters:
$n+1$ points $\ddot{y} \quad n$ cubic polynomials $\ddot{y} 4 n$ degrees of freedom
Number of constraints:

- interpolation constraints
$n+1$ points ÿ $2+2(n-1)=2 n$ interpolation constraints
"endpoints" + "each side of an internal point"
- rest by requiring smooth velocity, acceleration, etc.

40007
Lecture 10
Slide 12
6.837 Fall 2003

Hermite Splines

We want to support general constraints: not just smooth velocity and acceleration. For example, a bouncing ball does not always have continuous velocity:

Solution: specify position AND velocity at each point Derivation? $c_{0}, c_{1}, c_{2}, c_{3}=?$ for $x_{0}, v_{0}: t=t_{0}$ and $x_{1}, v_{1}: t=t_{1}$

Lecture 10
Slide 13
6.837 Fall 2003 Monr

Interpolating Key Frames

Interpolation is not fool proof. The splines may undershoot and cause interpenetration. The animator must also keep an eye out for these types of side-effects.

Squash and stretch

Squash: flatten an object or character by pressure or by its own power

Stretch: used to increase the sense of speed and emphasize the squash by contrast

4-Bary

Keyframing

Given keyframes $K_{i}=\left(p_{i}^{0}, p_{i}^{1}, \ldots, t_{i}\right), i=0, \ldots, n$
find curves $\boldsymbol{K}(t)=\left[\begin{array}{c}p^{0}(t) \\ p^{1}(t) \\ \vdots\end{array}\right]$ such that $\boldsymbol{K}\left(t_{i}\right)=\boldsymbol{K}_{i}$
What are parameters $p_{i}^{0}, p_{i}^{1}, \ldots$?

- position, orientation, size, visibility, ...

Interpolate each curve separately

* Back

Slide 14 6.837 Fall 2003

Menes

Traditional Animation Principles

The in-betweening, was once a job for apprentice animators. We described the automatic interpolation techniques that accomplish these tasks automatically. However, the animator still has to draw the key frames. This is an art form and precisely why the experienced animators were spared the inbetweening work even before automatic techniques.
The classical paper on animation by John Lasseter from Pixar surveys some the standard animation techniques:
"Principles of Traditional Animation Applied to 3D Computer Graphics, " SI GGRAPH'87, pp. 35-44.

Timing

Timing affects weight:

- Light object move quickly
- Heavier objects move slower

Timing completely changes the interpretation of the motion. Because the timing is critical, the animators used the draw a time scale next to the keyframe to indicate how to generate the in-between frames.

* Bang

Lecture 10
Slide 18
6.837 Fall 2003

Anticipation

An action breaks down into:

- Anticipation
- Action
- Reaction

Anatomical motivation: a muscle must extend before it can contract. Prepares audience for action so they know what to expect. Directs audience's attention. Amount of anticipation can affect perception of speed and weight.

Articulated Models

Articulated models:

- rigid parts

- connected by joints

They can be animated by specifying the joint angles as functions of time.

				$\xrightarrow[t_{2}]{ }$	
Hoary	Lecture 10	Slide 20		6.837 Fall 2003	Mone*

Skeleton Hierarchy

Each bone transformation described
relative to the parent in the
hierarchy:

Derive world coordinates v_{w} for an effecter with local coordinates v_{s} ?
40 Pay
Lecture 10
Slide 22
6.837 Fall 2003

Inverse Kinematics

Forward Kinematics

- Given the skeleton parameters (position of the root and the joint angles) p and the position of the effecter in local coordinates v_{s} what is the position of the sensor in the world coordinates v_{w} ?
- Not too hard, we can solve it by evaluating $S(p) v_{s}$

Inverse Kinematics

- Given the position of the effecter
in local coordinates v_{s} and the desired
position \tilde{v}_{w} in world coordinates, what
are the skeleton parameters p ?
- Much harder requires solving the inverse
of the non-linear function: p ? such that $S(p) v_{s}=\tilde{v}_{w}$
- Underdetermined problem with many solutions
$\mathrm{v}_{\mathrm{w}}=\mathrm{S}(\underbrace{\mathrm{x}_{\mathrm{h}}, y_{h}, z_{h}, \theta_{h}, \phi_{h}, \sigma_{h}, \theta_{t}, \phi_{t}, \sigma_{t}, \theta_{c}, \theta_{f}, \phi_{f}}_{\rho}) v_{s}=\mathrm{S}(p) v_{s}$

Real IK Problem

Find a "natural" skeleton configuration for a given collection of pose constraints.

Definition: A scalar objective function $g(p)$ measures the quality of a pose. The objective $g(p)$ reaches its minimum for the most natural skeleton configurations p.

Definition: A vector constraint function $C(p)=0$ collects all pose constraints:

Wanyr Lecture 10
6.837 Fall 2003 Manr ${ }^{2}$

Unconstrained Optimization

Define an objective function $f(p)$ that penalizes violation of pose constraints:

$$
\begin{aligned}
f(p) & =g(p)+\sum_{i} w_{i}\left[C_{i}(p)\right]^{2} \\
p^{*} & =\underset{p}{\operatorname{argmin}} f(p)
\end{aligned}
$$

Necessary condition:

$$
\begin{aligned}
f\left(p^{*}+\Delta p\right)-f\left(p^{*}\right) & \geq 0 & & \left(p^{*}\right. \text { is local minimum) } \\
\nabla f\left(p^{*}\right)^{T} \Delta p+\cdots & \geq 0 & & \text { (Taylor series) } \\
& \Downarrow & & \\
\nabla f\left(p^{*}\right) & =0 & & (\Delta p \text { is arbitrary })
\end{aligned}
$$

Gradient Computation

Requires computation of constraint derivatives:

- Compute derivatives of each transformation primitive
- Apply chain rule

Example:

$$
\begin{aligned}
& C(p) » \mathbf{T}\left(x_{h}, y_{h}, z_{h}\right) \mathbf{R}\left(r_{h}, g_{h}, t_{h}\right) \mathbf{T R}\left(r_{t}, g_{t}, t_{t}\right) \operatorname{TR}\left(r_{c}\right) \mathbf{T R}\left(r_{f}, g_{f}\right) v_{s} . \dot{*}_{w} \\
& \frac{\bullet C}{\bullet r_{c}}>\mathbf{T}\left(x_{h}, y_{h}, z_{h}\right) \mathbf{R}\left(x_{h}, g_{h}, t_{h}\right) \mathbf{T R}\left(x_{t}, g_{t}, t_{t}\right) \mathbf{T} \frac{\bullet \mathbf{R}\left(r_{c}\right)}{\bullet r_{c}} \mathbf{T R}\left(r_{f}, g_{f}\right) v_{s} \\
& \text { Derive } \frac{\bullet \mathbf{R}\left(r_{c}\right)}{\bullet r_{c}} \text { if } \mathbf{R} \text { is a rotation around z-axis? }
\end{aligned}
$$

Optimization

Compute the optimal parameters p^{*} that satisfy pose constraints and maximize the natural quality of skeleton configuration:

$$
\begin{array}{cl}
p^{*}=\underset{p}{\operatorname{argmin}} & g(p) \\
\text { s.t. } & C(p)=0
\end{array}
$$

Example objective functions $g(p)$:

- deviation from natural pose: $g(p)=(p-\bar{p})^{T} M(p-\bar{p})$
- joint stiffness
- power consumption
- ...
* Bader Lecture 10 Slide 26 6.837 Fall 2003 Menes

Numerical Solution

Gradient methods

- Guess initial solution x_{0}
- Iterate $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \quad \alpha_{k}>0, \quad \nabla f\left(x_{k}\right)^{T} d_{k}<0$
- Until $\nabla f\left(x_{k}\right)=0$

The conditions $\alpha_{k}>0, \nabla f\left(x_{k}\right)^{T} d_{k}<0$ guarantee that each new iterate is more optimal $f\left(x_{k+1}\right)<f\left(x_{k}\right)$. Derive?

Some choices for direction d_{k} :

- Steepest descent $d_{k}=-\nabla f\left(x_{k}\right)=-\frac{\partial g}{\partial p}-2 \sum_{i} w_{i} C_{i} \frac{\partial C_{i}}{\partial p}$
- Newton's method $\quad d_{k}=-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)$
- Quasi-Newton methods $d_{k}=-D_{k} \nabla f\left(x_{k}\right)$

Lecture 10
Slide 28
6.837 Fall 2003

Constrained Optimization

Unconstrained formulation has drawbacks:

- Sloppy constraints
- The setting of penalty weights w_{i} must balance the constraints and the natural quality of the pose
Necessary condition for equality constraints:
- Lagrange multiplier theorem:
$\nabla f\left(p^{*}\right)+\sum \lambda_{i} \nabla C_{i}\left(p^{*}\right)=0$
- $\lambda_{0}, \lambda_{1}, \ldots$ are scalars called Lagrange multipliers

Interpretations:

- Cost gradient (direction of improving the cost) belongs to the subspace spanned by constraint gradients (normals to the constraints surface).
- Cost gradient is orthogonal to subspace of feasible variations.

Lecture 10
Slide 30
6.837 Fall 2003
.

IK with Differential Constraints

Interactive Inverse Kinematics

- User interface assembles desired effecter variations $\Delta \tilde{v}$
- Solve quadratic program with Lagrange multipliers:

$$
\begin{array}{clrl}
\Delta p^{*}= & \underset{\Delta p}{\operatorname{argmin}} & & \Delta p^{T} M \Delta p \\
\text { s.t. } & \frac{\partial C(p)}{\partial p} \Delta p=\Delta \tilde{v}
\end{array}
$$

- Update current pose: $p_{k+1}=p_{k}+\alpha_{k} \Delta p^{*}$

Objective function is quadratic, differential constraints are linear.
Some choices for matrix M :

- Identity: minimizes parameter variations
- Diagonal: minimizes scaled parameter variations

Hosay
Lecture 10
Slide 34
6.837 Fall 2003

Kinematics vs. Dynamics

Kinematics

Describes the positions of body parts as a function of skeleton parameters.
Dynamics
Describes the positions of body parts as a function of applied forces.

