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Animation
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Conventional Animation
Draw each frame of the animation

great control
tedious

Reduce burden with cel animation
layer
keyframe
inbetween
cel panoramas (Disney’s Pinocchio)
...

ACM © 1997 “Multiperspective panoramas for cel animation”
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Computer-Assisted Animation
Keyframing 

automate the inbetweening
good control
less tedious
creating a good animation

still requires considerable skill
and talent

Procedural animation
describes the motion algorithmically
express animation as a function 

of small number of parameteres
Example: a clock with second, minute and hour hands

hands should rotate together
express the clock motions in terms of a “seconds” variable
the clock is animated by varying the seconds parameter

Example 2: A bouncing ball
Abs(sin(ωt+θ0))*e-kt

ACM © 1987 “Principles of traditional animation 
applied to 3D computer animation”
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Computer-Assisted Animation
Physically Based Animation

Assign physical properties to objects 
(masses, forces, inertial properties) 

Simulate physics by solving equations
Realistic but difficult to control

Motion Capture
Captures style, subtle nuances and realism
You must observe someone do something

ACM© 1988 “Spacetime Constraints”
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Overview
Hermite Splines
Keyframing
Traditional Principles

Articulated Models
Forward Kinematics
Inverse Kinematics
Optimization
Differential Constraints
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Keyframing

Describe motion of objects as a function of time from a set of 
key object positions.  In short, compute the inbetween frames.

ACM © 1987 “Principles of traditional animation applied 
to 3D computer animation”
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Interpolating Positions
Given positions:

find curve                       such that
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Linear Interpolation

Simple problem: linear interpolation between first two points 
assuming                      :
The x-coordinate for the complete curve in the figure:
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Derivation?
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Polynomial Interpolation

An n-degree polynomial can interpolate any n+1 points. The 
Lagrange formula gives the n+1 coefficients of an n-degree 
polynomial that interpolates n+1 points. The resulting 
interpolating polynomials are called Lagrange polynomials. On 
the previous slide, we saw the Lagrange formula for n = 1.  

0 0 0( , , )x y t

1 1 1( , , )x y t

2 2 2( , , )x y t

parabola
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Spline Interpolation
Lagrange polynomials of small degree are fine but high degree 
polynomials are too wiggly. 

How many n-degree polynomials interpolate n+1 points?

( )x t

t t t

8-degree polynomial spline spline vs. polynomial
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Spline Interpolation
Lagrange polynomials of small degree are fine but high degree 
polynomials are too wiggly. 
Spline (piecewise cubic polynomial) interpolation produces 
nicer interpolation.

( )x t

t t t

8-degree polynomial spline spline vs. polynomial
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Spline Interpolation
A cubic polynomial between each pair of points:

Four parameters (degrees of freedom) for each spline 
segment.
Number of parameters:
n+1 points ⇒ n cubic polynomials ⇒ 4n degrees of freedom

Number of constraints:
interpolation constraints

n+1 points ⇒ 2 + 2 (n-1) = 2n interpolation constraints

“endpoints” + “each side of an internal point”
rest by requiring smooth velocity, acceleration, etc.

2 3
0 1 2 3( )x t c c t c t c t= + + +
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Hermite Splines
We want to support general constraints: not just smooth 
velocity and acceleration.   For example, a bouncing ball does 
not always have continuous velocity:

Solution: specify position AND velocity at each point
Derivation?   = = =0 1 2 3 0 0 0 1 1 1, , , ? for , :  and , :c c c c x v t t x v t t
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Keyframing
Given keyframes

find curves                       such that

What are parameters              ?
position, orientation, size, visibility, …

Interpolate each curve separately
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Interpolating Key Frames
Interpolation is not fool proof.  The splines may undershoot 
and cause interpenetration.  The animator must also keep 
an eye out for these types of side-effects.
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Traditional Animation Principles
The in-betweening, was once a job for apprentice animators. 
We described the automatic interpolation techniques that 
accomplish these tasks automatically. However, the animator 
still has to draw the key frames.  This is an art form and 
precisely why the experienced animators were spared the in-
betweening work even before automatic techniques.
The classical paper on animation by John Lasseter from Pixar
surveys some the standard animation techniques: 
"Principles of Traditional Animation Applied to 3D Computer
Graphics,“ SIGGRAPH'87, pp. 35-44.
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Squash and stretch
Squash: flatten an object or character by pressure or by its 

own power

Stretch: used to increase the sense of speed and emphasize 
the squash by contrast
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Timing

Timing affects weight:
Light object move quickly
Heavier objects move slower

Timing completely changes the interpretation of the motion. 
Because the timing is critical, the animators used the draw a 
time scale next to the keyframe to indicate how to generate 
the in-between frames.
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Anticipation
An action breaks down into:

Anticipation
Action
Reaction

Anatomical motivation: a muscle must extend before it can 
contract.  Prepares audience for action so they know what to 
expect. Directs audience’s attention.  Amount of anticipation 
can affect perception of speed and weight.
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Articulated Models
Articulated models:

rigid parts
connected by joints

They can be animated by specifying the joint angles as 
functions of time.

t1 t2

qi q ti ( )

t1 t2
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Forward Kinematics
Describes the positions of the body parts as a function of the 
joint angles.

1 DOF: knee1 DOF: knee 2 DOF: wrist2 DOF: wrist 3 DOF: arm3 DOF: arm
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Skeleton Hierarchy
Each bone transformation described 
relative to the parent in the 
hierarchy:

hips

r-thigh

r-calf

r-foot

left-leg ...

, , , , ,h h h h h hx y z θ φ σ

, ,t t tθ φ σ

cθ

,f fθ φ

Derive world coordinates       for an effecter with local coordinates      ? 
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y

x
z

wv sv
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Forward Kinematics

vs

y

x
z

w =v
sv( , )

f f
θ φTR( )cθTR( , , )

t t t
θ φ σTR( , , ) ( , , )

h h h h h h
x y z θ φ σT R

vsvs

Transformation matrix for an effecter vs is a 
matrix composition of all joint transformation 
between the effecter and the root of the 
hierarchy.
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Inverse Kinematics
Forward Kinematics

Given the skeleton parameters (position of the root and the joint 
angles) p and the position of the effecter in local coordinates vs, what 
is the position of the sensor in the world coordinates vw?
Not too hard, we can solve it by evaluating

Inverse Kinematics
Given the position of the effecter 

in local coordinates vs and the desired 
position ṽw in world coordinates, what
are the skeleton parameters p?

Much harder requires solving the inverse
of the non-linear function:

Underdetermined problem with many solutions

( ) sS p v

( ) = %?  such that  s wp S p v v

vsvs

, , , , ,h h h h h hx y z θ φ σ

, ,t t tθ φ σ

cθ
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%
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Real IK Problem
Find a “natural” skeleton configuration for a given collection of 
pose constraints.

Definition: A scalar objective function g(p) measures the 
quality of a pose. The objective g(p) reaches its minimum for 
the most natural skeleton configurations p.

Definition: A vector constraint function C(p) = 0 collects all 
pose constraints:

( )
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Lecture 10 Slide 26 6.837 Fall 2003

Optimization
Compute the optimal parameters p* that satisfy pose 
constraints and maximize the natural quality of skeleton 
configuration:

Example objective functions g(p):
deviation from natural pose: 
joint stiffness
power consumption
…

=

=

* argmin ( )

      s.t.         ( ) 0
p

p g p

C p

( )= − −( ) ( )
Tg p p p M p p
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Unconstrained Optimization
Define an objective function f(p) that penalizes violation of 
pose constraints:

Necessary condition:
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Numerical Solution
Gradient methods

Guess initial solution x0

Iterate
Until

The conditions                                guarantee that each new 
iterate is more optimal                    . Derive?

Some choices for direction dk:
Steepest descent

Newton’s method
Quasi-Newton methods

α α+ = + > ∇ <1 , 0, ( ) 0T
k k k k k k kx x d f x d

∇ =( ) 0kf x
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Gradient Computation
Requires computation of constraint derivatives:

Compute derivatives of each transformation primitive
Apply chain rule

Example:

Derive            if R is a rotation around z-axis?
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Constrained Optimization
Unconstrained formulation has drawbacks:

Sloppy constraints
The setting of penalty weights wi must balance the constraints and 
the natural quality of the pose

Necessary condition for equality constraints:
Lagrange multiplier theorem:

λ0 , λ1, … are scalars called Lagrange multipliers

Interpretations:
Cost gradient (direction of improving the cost) belongs to the 
subspace spanned by constraint gradients (normals to the constraints 
surface).
Cost gradient is orthogonal to subspace of feasible variations.

λ∇ + ∇ =∑* *( ) ( ) 0i i
i

f p C p
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Example
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Nonlinear Programming
Use Lagrange multipliers and nonlinear programming 
techniques to solve the IK problem:

In general, slow for interactive use!

}

⎫= ⎬
⎭
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* argmin ( )      nonlinear objective

       s.t.         ( ) 0 nonlinear constraints

p
p g p
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Differential Constraints
Differential constraints linearize
original pose constraints.

Rewrite constraints by pulling the 
desired effecter locations to the 
right hand side

Construct linear approximation 
around the current parameter p. 
Derive with Taylor series.
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IK with Differential Constraints
Interactive Inverse Kinematics

User interface assembles desired effecter variations
Solve quadratic program with Lagrange multipliers:

Update current pose:

Objective function is quadratic, differential constraints are 
linear.
Some choices for matrix M:

Identity: minimizes parameter variations
Diagonal: minimizes scaled parameter variations
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Quadratic Program
Elimination procedure

Apply Lagrange multiplier theorem 
and convert to vector notation:
general form in scalar notation:

Rewrite to expose ∆p:

Use this expression to replace ∆p in 
the differential constraint:

Solve for Lagrange multipliers and 
compute ∆p*
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Kinematics vs. Dynamics
Kinematics
Describes the positions of body parts as a function of skeleton 
parameters.
Dynamics
Describes the positions of body parts as a function of applied 
forces.
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Next
Dynamics

ACM© 1988 “Spacetime Constraints”


