
1

Lecture 10 Slide 1 6.837 Fall 2003

Animation

Lecture 10 Slide 2 6.837 Fall 2003

Conventional Animation
Draw each frame of the animation

great control
tedious

Reduce burden with cel animation
layer
keyframe
inbetween
cel panoramas (Disney’s Pinocchio)
...

ACM © 1997 “Multiperspective panoramas for cel animation”

Lecture 10 Slide 3 6.837 Fall 2003

Computer-Assisted Animation
Keyframing

automate the inbetweening
good control
less tedious
creating a good animation

still requires considerable skill
and talent

Procedural animation
describes the motion algorithmically
express animation as a function

of small number of parameteres
Example: a clock with second, minute and hour hands

hands should rotate together
express the clock motions in terms of a “seconds” variable
the clock is animated by varying the seconds parameter

Example 2: A bouncing ball
Abs(sin(ωt+θ0))*e-kt

ACM © 1987 “Principles of traditional animation
applied to 3D computer animation”

Lecture 10 Slide 4 6.837 Fall 2003

Computer-Assisted Animation
Physically Based Animation

Assign physical properties to objects
(masses, forces, inertial properties)

Simulate physics by solving equations
Realistic but difficult to control

Motion Capture
Captures style, subtle nuances and realism
You must observe someone do something

ACM© 1988 “Spacetime Constraints”

Lecture 10 Slide 5 6.837 Fall 2003

Overview
Hermite Splines
Keyframing
Traditional Principles

Articulated Models
Forward Kinematics
Inverse Kinematics
Optimization
Differential Constraints

Lecture 10 Slide 6 6.837 Fall 2003

Keyframing

Describe motion of objects as a function of time from a set of
key object positions. In short, compute the inbetween frames.

ACM © 1987 “Principles of traditional animation applied
to 3D computer animation”

()s t

2

Lecture 10 Slide 7 6.837 Fall 2003

Interpolating Positions
Given positions:

find curve such that

(, ,), 0, ,i i ix y t i n= K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

()
()

()
x t

t
y t

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

() i
i

i

x
t

y
C

0u0 0 0(, ,)x y t

1 1 1(, ,)x y t

2 2 2(, ,)x y t

()tC

Lecture 10 Slide 8 6.837 Fall 2003

Linear Interpolation

Simple problem: linear interpolation between first two points
assuming :
The x-coordinate for the complete curve in the figure:

0 0 0(, ,)x y t

1 1 1(, ,)x y t

2 2 2(, ,)x y t

)01
0 1 0 1

1 0 1 0

2 1
1 2 1 2

2 1 2 1

, ,
()

, ,

t tt t x x t t t
t t t t

x t
t t t tx x t t t
t t t t

−−⎧ + ∈ ⎡⎣⎪ − −⎪= ⎨
− −⎪ + ∈ ⎡ ⎤⎣ ⎦⎪ − −⎩

0 1=0 and =1t t ()= − +0 1() 1x t x t x t

Derivation?

Lecture 10 Slide 9 6.837 Fall 2003

Polynomial Interpolation

An n-degree polynomial can interpolate any n+1 points. The
Lagrange formula gives the n+1 coefficients of an n-degree
polynomial that interpolates n+1 points. The resulting
interpolating polynomials are called Lagrange polynomials. On
the previous slide, we saw the Lagrange formula for n = 1.

0 0 0(, ,)x y t

1 1 1(, ,)x y t

2 2 2(, ,)x y t

parabola

Lecture 10 Slide 10 6.837 Fall 2003

Spline Interpolation
Lagrange polynomials of small degree are fine but high degree
polynomials are too wiggly.

How many n-degree polynomials interpolate n+1 points?

()x t

t t t

8-degree polynomial spline spline vs. polynomial

Lecture 10 Slide 11 6.837 Fall 2003

Spline Interpolation
Lagrange polynomials of small degree are fine but high degree
polynomials are too wiggly.
Spline (piecewise cubic polynomial) interpolation produces
nicer interpolation.

()x t

t t t

8-degree polynomial spline spline vs. polynomial

Lecture 10 Slide 12 6.837 Fall 2003

Spline Interpolation
A cubic polynomial between each pair of points:

Four parameters (degrees of freedom) for each spline
segment.
Number of parameters:
n+1 points ⇒ n cubic polynomials ⇒ 4n degrees of freedom

Number of constraints:
interpolation constraints

n+1 points ⇒ 2 + 2 (n-1) = 2n interpolation constraints

“endpoints” + “each side of an internal point”
rest by requiring smooth velocity, acceleration, etc.

2 3
0 1 2 3()x t c c t c t c t= + + +

3

Lecture 10 Slide 13 6.837 Fall 2003

Hermite Splines
We want to support general constraints: not just smooth
velocity and acceleration. For example, a bouncing ball does
not always have continuous velocity:

Solution: specify position AND velocity at each point
Derivation? = = =0 1 2 3 0 0 0 1 1 1, , , ? for , : and , :c c c c x v t t x v t t

Lecture 10 Slide 14 6.837 Fall 2003

Keyframing
Given keyframes

find curves such that

What are parameters ?
position, orientation, size, visibility, …

Interpolate each curve separately

()= =K K0 1, , , , 0, ,i i i iK p p t i n

()
()

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦M

0

1()
p t

t p tK ()i it =K K

K0 1, ,i ip p

Lecture 10 Slide 15 6.837 Fall 2003

Interpolating Key Frames
Interpolation is not fool proof. The splines may undershoot
and cause interpenetration. The animator must also keep
an eye out for these types of side-effects.

Lecture 10 Slide 16 6.837 Fall 2003

Traditional Animation Principles
The in-betweening, was once a job for apprentice animators.
We described the automatic interpolation techniques that
accomplish these tasks automatically. However, the animator
still has to draw the key frames. This is an art form and
precisely why the experienced animators were spared the in-
betweening work even before automatic techniques.
The classical paper on animation by John Lasseter from Pixar
surveys some the standard animation techniques:
"Principles of Traditional Animation Applied to 3D Computer
Graphics,“ SIGGRAPH'87, pp. 35-44.

Lecture 10 Slide 17 6.837 Fall 2003

Squash and stretch
Squash: flatten an object or character by pressure or by its

own power

Stretch: used to increase the sense of speed and emphasize
the squash by contrast

Lecture 10 Slide 18 6.837 Fall 2003

Timing

Timing affects weight:
Light object move quickly
Heavier objects move slower

Timing completely changes the interpretation of the motion.
Because the timing is critical, the animators used the draw a
time scale next to the keyframe to indicate how to generate
the in-between frames.

4

Lecture 10 Slide 19 6.837 Fall 2003

Anticipation
An action breaks down into:

Anticipation
Action
Reaction

Anatomical motivation: a muscle must extend before it can
contract. Prepares audience for action so they know what to
expect. Directs audience’s attention. Amount of anticipation
can affect perception of speed and weight.

Lecture 10 Slide 20 6.837 Fall 2003

Articulated Models
Articulated models:

rigid parts
connected by joints

They can be animated by specifying the joint angles as
functions of time.

t1 t2

qi q ti ()

t1 t2

Lecture 10 Slide 21 6.837 Fall 2003

Forward Kinematics
Describes the positions of the body parts as a function of the
joint angles.

1 DOF: knee1 DOF: knee 2 DOF: wrist2 DOF: wrist 3 DOF: arm3 DOF: arm

Lecture 10 Slide 22 6.837 Fall 2003

Skeleton Hierarchy
Each bone transformation described
relative to the parent in the
hierarchy:

hips

r-thigh

r-calf

r-foot

left-leg ...

, , , , ,h h h h h hx y z θ φ σ

, ,t t tθ φ σ

cθ

,f fθ φ

Derive world coordinates for an effecter with local coordinates ?

vs

y

x
z

wv sv

Lecture 10 Slide 23 6.837 Fall 2003

Forward Kinematics

vs

y

x
z

w =v
sv(,)

f f
θ φTR()cθTR(, ,)

t t t
θ φ σTR(, ,) (, ,)

h h h h h h
x y z θ φ σT R

vsvs

Transformation matrix for an effecter vs is a
matrix composition of all joint transformation
between the effecter and the root of the
hierarchy.

()θ φ σ θ φ σ θ θ φ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
14444444244444443w hv =S x , , , , , , , , , , , =Sh h h h h t t t c f f s s

p

y z v p v

, , , , ,h h h h h hx y z θ φ σ

, ,t t tθ φ σ

cθ

,f fθ φ

Lecture 10 Slide 24 6.837 Fall 2003

Inverse Kinematics
Forward Kinematics

Given the skeleton parameters (position of the root and the joint
angles) p and the position of the effecter in local coordinates vs, what
is the position of the sensor in the world coordinates vw?
Not too hard, we can solve it by evaluating

Inverse Kinematics
Given the position of the effecter

in local coordinates vs and the desired
position ṽw in world coordinates, what
are the skeleton parameters p?

Much harder requires solving the inverse
of the non-linear function:

Underdetermined problem with many solutions

() sS p v

() = %? such that s wp S p v v

vsvs

, , , , ,h h h h h hx y z θ φ σ

, ,t t tθ φ σ

cθ

,f fθ φ
%
wv

5

Lecture 10 Slide 25 6.837 Fall 2003

Real IK Problem
Find a “natural” skeleton configuration for a given collection of
pose constraints.

Definition: A scalar objective function g(p) measures the
quality of a pose. The objective g(p) reaches its minimum for
the most natural skeleton configurations p.

Definition: A vector constraint function C(p) = 0 collects all
pose constraints:

()
()

⎡ ⎤−
⎢ ⎥− =⎢ ⎥
⎢ ⎥⎣ ⎦

%

%

M
1442443

0 0 0

1 1 1

()

0

C p

S p v v
S p v v

Lecture 10 Slide 26 6.837 Fall 2003

Optimization
Compute the optimal parameters p* that satisfy pose
constraints and maximize the natural quality of skeleton
configuration:

Example objective functions g(p):
deviation from natural pose:
joint stiffness
power consumption
…

=

=

* argmin ()

 s.t. () 0
p

p g p

C p

()= − −() ()
Tg p p p M p p

Lecture 10 Slide 27 6.837 Fall 2003

Unconstrained Optimization
Define an objective function f(p) that penalizes violation of
pose constraints:

Necessary condition:

= + ⎡ ⎤⎣ ⎦

=

∑ 2

*

() () ()

argmin ()

i i
i

p

f p g p w C p

p f p

+ ∆ − ≥

∇ ∆ + ≥

⇓

∇ = ∆

L

* * *

*

*

() () 0 (is local minimum)

() 0 (Taylor series)

() 0 (is arbitrary)

T

f p p f p p
f p p

f p p

Lecture 10 Slide 28 6.837 Fall 2003

Numerical Solution
Gradient methods

Guess initial solution x0

Iterate
Until

The conditions guarantee that each new
iterate is more optimal . Derive?

Some choices for direction dk:
Steepest descent

Newton’s method
Quasi-Newton methods

α α+ = + > ∇ <1 , 0, () 0T
k k k k k k kx x d f x d

∇ =() 0kf x

α > ∇ <0, () 0T
k k kf x d

+ <1() ()k kf x f x

∂ ∂
= −∇ = − −

∂ ∂∑() 2 i
k k i i

i

g Cd f x w C
p p

−
⎡ ⎤= − ∇ ∇⎣ ⎦

12 () ()k k kd f x f x
= − ∇ ()k k kd D f x

Lecture 10 Slide 29 6.837 Fall 2003

Gradient Computation
Requires computation of constraint derivatives:

Compute derivatives of each transformation primitive
Apply chain rule

Example:

Derive if R is a rotation around z-axis?

() (, ,) (, ,) (, ,) () (,)

()
(, ,) (, ,) (, ,) (,)

h h h h h h t t t c f f s w

c
h h h h h h t t t f f s

c c

C p x y z v v
C x y z v

T R TR TR TR
RT R TR T TR

θ φ σ θ φ σ θ θ φ

θ
θ φ σ θ φ σ θ φ

θ θ

≡ −

∂∂
=

∂ ∂

�

()c

c

R θ

θ

∂

∂

Lecture 10 Slide 30 6.837 Fall 2003

Constrained Optimization
Unconstrained formulation has drawbacks:

Sloppy constraints
The setting of penalty weights wi must balance the constraints and
the natural quality of the pose

Necessary condition for equality constraints:
Lagrange multiplier theorem:

λ0 , λ1, … are scalars called Lagrange multipliers

Interpretations:
Cost gradient (direction of improving the cost) belongs to the
subspace spanned by constraint gradients (normals to the constraints
surface).
Cost gradient is orthogonal to subspace of feasible variations.

λ∇ + ∇ =∑* *() () 0i i
i

f p C p

6

Lecture 10 Slide 31 6.837 Fall 2003

Example

= +

+ =

*
1 2

2 2
1 2

argmin

 s.t. 2
p

p p p

p p

⎡ ⎤
∇ = ⎢ ⎥

⎣ ⎦
* 1

()
1

f p

−⎡ ⎤
∇ = ⎢ ⎥−⎣ ⎦

* 2
()

2
C p

Lecture 10 Slide 32 6.837 Fall 2003

Nonlinear Programming
Use Lagrange multipliers and nonlinear programming
techniques to solve the IK problem:

In general, slow for interactive use!

}

⎫= ⎬
⎭
=

* argmin () nonlinear objective

 s.t. () 0 nonlinear constraints

p
p g p

C p

Lecture 10 Slide 33 6.837 Fall 2003

Differential Constraints
Differential constraints linearize
original pose constraints.

Rewrite constraints by pulling the
desired effecter locations to the
right hand side

Construct linear approximation
around the current parameter p.
Derive with Taylor series.

()
()

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

%

%

M M
14243

0 0 0

1 1 1

()C p

S p v v
S p v v

∂
∆ = ∆

∂
%()C p p v

p

Lecture 10 Slide 34 6.837 Fall 2003

IK with Differential Constraints
Interactive Inverse Kinematics

User interface assembles desired effecter variations
Solve quadratic program with Lagrange multipliers:

Update current pose:

Objective function is quadratic, differential constraints are
linear.
Some choices for matrix M:

Identity: minimizes parameter variations
Diagonal: minimizes scaled parameter variations

∆ %v

∆
∆ = ∆ ∆

∂
∆ = ∆

∂
%

* argmin

()
 s.t.

T

p
p p M p

C p p v
p

α+ = + ∆ *
1k k kp p p

Lecture 10 Slide 35 6.837 Fall 2003

Quadratic Program
Elimination procedure

Apply Lagrange multiplier theorem
and convert to vector notation:
general form in scalar notation:

Rewrite to expose ∆p:

Use this expression to replace ∆p in
the differential constraint:

Solve for Lagrange multipliers and
compute ∆p*

λ⎛ ⎞∂
∆ + =⎜ ⎟∂⎝ ⎠

()
0

T
C pM p

p
λ∇ + ∇ =∑* *() () 0i i

i

f p C p

λ− ⎛ ⎞∂ ∂
= −∆⎜ ⎟∂ ∂⎝ ⎠

%1() ()
T

C p C pM v
p p

λ− ⎛ ⎞∂
∆ = − ⎜ ⎟∂⎝ ⎠

1 ()
T

C pp M
p

Lecture 10 Slide 36 6.837 Fall 2003

Kinematics vs. Dynamics
Kinematics
Describes the positions of body parts as a function of skeleton
parameters.
Dynamics
Describes the positions of body parts as a function of applied
forces.

7

Lecture 10 Slide 37 6.837 Fall 2003

Next
Dynamics

ACM© 1988 “Spacetime Constraints”

