Review of Ray Casting

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

Ray Tracing

- Secondary rays (shadows, reflection, refraction)
- In a couple of weeks

4

Ray representation

Explicit vs. implicit

- Implicit
- Solution of an equation
- Does not tell us how to generate a point on the plane
- Tells us how to check that a point is on the plane
- Explicit
- Parametric
- How to generate points
- Harder to verify that a point is on the ray

Durer's Ray casting machine

A note on shading

- Normal direction, direction to light
- Diffuse component: dot product
- Specular component for shiny materials
- Depends on viewpoint
- More in two weeks

References for ray casting/tracing

- Shirley Chapter 9
- Specialized books

- Online resources

http://www.irtc.org
http://www.acm.org/tog/resources/RTNews/html
http://www.povray.org/
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

Durer's Ray casting machine

- Albrecht Durer, $16^{\text {th }}$ century

Textbook

- Recommended, not required
- Peter Shirley

Fundamentals of Computer Graphics
AK Peters

Assignment 1

- Write a basic ray caster
- Orthographic camera
- Spheres

- Display: constant color and distance
- We provide
- Ray
- Hit
- Parsing
- And linear algebra, image

Object-oriented design

- We want to be able to add primitives easily - Inheritance and virtual methods
- Even the scene is derived from Object3D!

Hit

- Store intersection point \& various information
class Hit
public:
// CONSTRUCTOR \& DESTRUCTOR
Hit (float _t, Vec3f c) \{t = _t; color = c; \}
Hit () $\}$
/ ACCESSORS
float getT () const \{ return t;
Vec3f getColor() const \{ return color;
// MODIFIER
yoid set(float _t, Vec3f c) \{ t = _t; color = c; \}
private:
// REPRESENTATION
float t;
Vec3f color;
//Material *material;
Vec3f normal;
f;

Tasks

- Abstract Object3D
- Sphere and intersection
- Group class
- Abstract camera and derive Orthographic
- Main function
MIT EECS 6.837, Cutler and Durand $\quad 16$

Questions?

Image by Henrik Wann Jensen

Overview of today

- Ray-box intersection
- Ray-polygon intersection
- Ray-triangle intersection

Ray-Parallelepiped Intersection

- Axis-aligned
- From (X1, Y1, Z1) to (X2, Y2, Z2)
- Ray $\mathrm{P}(\mathrm{t})=\mathrm{R}+\mathrm{Dt}$

Factoring out computation

- Pairs of planes have the same normal
- Normals have only one non-0 component
- Do computations one dimension at a time
- Maintain tnear and tfar (closest and farthest

If not parallel

- Calculate intersection distance t 1 and t 2
$-\mathrm{tl}=(\mathrm{X} 1-\mathrm{Rx}) / D \mathrm{D}$
$-\mathrm{t} 2=(\mathrm{X} 2-\mathrm{Rx}) / \mathrm{Dx}$

Test 1

- Maintain tnear and tfar - If t1>t2, swap - if $\mathrm{tl}>$ tnear, tnear $=\mathrm{t} 1$ if $\mathrm{t} 2<\mathrm{tfar}$, $\mathrm{tfar}=\mathrm{t} 2$
- If tnear $>$ tfar, box is missed

Test 2

- If $\operatorname{tfar}<0$, box is behind

Algorithm recap

- Do for all 3 axis
- Calculate intersection distance t 1 and t 2
- Maintain tnear and tfar
- If tnear>tfar, box is missed
- If $\mathrm{tfar}<0$, box is behind
- If box survived tests, report intersection at tnear

Efficiency issues

Questions?

Do for all 3 axis

- Calculate intersection distance t 1 and t 2
- Maintain tnear and tfar
- If tnear>tfar, box is missed
- If tfar <0, box is behind
- If box survived tests, report intersection at tnear
- $1 / \mathrm{Dx}, 1 / \mathrm{Dy}$ and $1 / \mathrm{Dz}$ can be precomputed and shared for many boxes
- Unroll the loop
- Loops are costly (because of termination if)
- Avoids the tnear tfar for X dimension

Overview of today

- Ray-box intersection
- Ray-polygon intersection
- Ray-triangle intersection

Ray-polygon intersection

- Ray-plane intersection
- Test if intersection is in the polygon
- Solve in the 2D plane

Point inside/outside polygon

- Ray intersection definition:
- Cast a ray in any direction
- (axis-aligned is smarter)
- Count intersection
- If odd number, point is inside
- Works for concave and star-shaped

Precision issue

- What if we intersect a vertex?
- We might wrongly count an intersection for each adjacent edge
- Decide that the vertex is always above the ray

Alternative definitions

- Sum of the signed angles from point to vertices - 360 if inside, 0 if outside
- Sum of the signed areas of point-edge triangles - Area of polygon if inside, 0 if outside

How do we project into 2D?

- Along normal
- Costly
- Along axis
- Smarter (just drop 1 coordinate)
- Beware of parallel plane

MIT EECS 6.837, Cutler and Durand

Questions?

Overview of today

- Ray-box intersection

- Ray-polygon intersection
- Ray-triangle intersection

Ray triangle intersection

- Use ray-polygon
- Or try to be smarter
- Use barycentric coordinates

Barycentric definition of a triangle

- $\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
with $\alpha+\beta+\gamma=1$
$0<\alpha<1$
$0<\beta<1$

MIT EECS 6.837, Cutler and Durand

Given P , how can we compute α, β, γ ?

- Compute the areas of the opposite subtriangle
- Ratio with complete area

$$
\alpha=\mathrm{A}_{\mathrm{a}} / \mathrm{A}, \quad \beta=\mathrm{A}_{\mathrm{b}} / \mathrm{A} \quad \gamma=\mathrm{A}_{\mathrm{c}} / \mathrm{A}
$$

Use signed areas for points outside the triangle

Intuition behind area formula

- P is barycenter of a and Q
- A is the interpolation coefficient on aQ
- All points on line parallel to bc have the same α
- All such Ta triangles have same height/area

Simplify

- Since $\alpha+\beta+\gamma=1$ we can write $\alpha=1-\beta-\gamma$
- $\mathrm{P}(\beta, \gamma)=(1-\beta-\gamma) \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$

How do we use it for intersection?

- Insert ray equation into barycentric expression of triangle
- $\mathrm{P}(\mathrm{t})=\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\gamma(\mathrm{c}-\mathrm{a})$
- Intersection if $\beta+\gamma<1 ; \quad 0<\beta$ and $0<\gamma$

Matrix form

- $\mathrm{R}_{\mathrm{x}}+\mathrm{tD}_{\mathrm{x}}=\mathrm{a}_{\mathrm{x}}+\beta\left(\mathrm{b}_{\mathrm{x}}-\mathrm{a}_{\mathrm{x}}\right)+\gamma\left(\mathrm{c}_{\mathrm{x}}-\mathrm{a}_{\mathrm{x}}\right)$
- $\mathrm{R}_{\mathrm{y}}+\mathrm{DD}_{\mathrm{y}}=\mathrm{a}_{\mathrm{y}}+\beta\left(\mathrm{b}_{\mathrm{y}} \mathrm{a}_{\mathrm{y}}\right)+\gamma\left(\mathrm{c}_{\mathrm{y}}-\mathrm{a}_{\mathrm{y}}\right)$
$\left[\begin{array}{ccc}a_{x}-b_{x} & a_{x}-c_{x} & D_{x} \\ a_{y}-b_{y} & a_{y}-c_{y} & D_{y} \\ a_{z}-b_{z} & a_{z}-c_{z} & D_{z}\end{array}\right]\left[\begin{array}{c}\beta \\ \gamma \\ t\end{array}\right]=\left[\begin{array}{c}a_{x}-R_{x} \\ a_{y}-R_{y} \\ a_{z}-R_{z}\end{array}\right]$

Cramer's rule

- || denotes the determinant

- Can be copied mechanically in the code

Advantage

- Efficient
- Store no plane equation
- Get the barycentric coordinates for free
- Useful for interpolation, texture mapping

Plucker computation

- Plucker space:

6 or 5 dimensional space describing 3D lines

- A line is a point in Plucker space

Plucker computation

- The rays intersecting a line are a hyperplane
- A triangle defines 3 hyperplanes
- The polytope defined by the hyperplanes is the set of rays that intersect the triangle

- Ray-triangle intersection becomes a polytope inclusion
- Couple of additional issues

Questions?

- Image computed using the RADIANCE system by Greg Ward

Plucker computation

- The rays intersecting a line are a hyperplane
- A triangle defines 3 hyperplanes
- The polytope defined by the hyperplanes is the set of rays that intersect the triangle

Next week: Transformations

- Permits 3D IFS ;-)

