Computer Animation

Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Slides courtesy of Leonard McMillan and Jovan Popovic

Administrative

Office hours

- Durand & Teller by appointment
- Ngan Thursday 4-7 in W20-575

Deadline for proposal: Friday Nov 1

Meeting with faculty & staff about proposal

- Next week
- Web page for appointment

Animation

4 approaches to animation Pros ? Cons ?

Lecture 14

Slide 3

Computer-Assisted Animation

Keyframing

- automate the inbetweening
- good control
- less tedious
- creating a good animation still requires considerable skill and talent

Procedural animation

- describes the motion algorithmically
- express animation as a function
- of small number of parameteres
- Example: a clock with second, minute and hour hands
 - hands should rotate together
 - express the clock motions in terms of a "seconds" variable
 - the clock is animated by varying the seconds parameter
- Example 2: A bouncing ball
 - Abs(sin(ωt+θ₀))*e^{-kt}

ACM © 1987 "Principles of traditional animation applied to 3D computer animation"

Lecture 14

Computer-Assisted Animation

Physically Based Animation

- Assign physical properties to objects (masses, forces, inertial properties)
- Simulate physics by solving equations
- Realistic but difficult to control

ACM© 1988 "Spacetime Constraints"

Motion Capture

- Captures style, subtle nuances and realism
- You must observe someone do something

Overview

Keyframing and interpolation Interpolation of rotations, quaternions Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids

Kinematics vs. Dynamics

Kinematics

Describes the positions of the body parts as a function of the joint angles.

Dynamics

Describes the positions of the body parts as a function of the applied forces.

Now

Dynamics

ACM© 1988 "Spacetime Constraints"

Particle

A single particle in 2-D moving in a flow field

• Position
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

• Velocity $\mathbf{V} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \mathbf{V} = \frac{d\mathbf{X}}{dt}$

• The flow field function dictates particle velocity $\mathbf{V} = \mathbf{g}(\mathbf{X}, t)$

The flow field $\mathbf{g}(\mathbf{x}, t)$ is a vector field that defines a vector for any particle position \mathbf{x} at any time t.

How would a particle move in this vector field?

Differential Equations

The equation $\mathbf{v} = \mathbf{g}(\mathbf{x}, t)$ is a first order differential equation:

$$\frac{d\mathbf{x}}{dt} = \mathbf{g}(\mathbf{x}, t)$$

The position of the particle is computed by integrating the differential equation:

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \int_{t_0}^{t} \mathbf{g}(\mathbf{x}, t) dt$$

For most interesting cases, this integral cannot be computed analytically.

Numeric Integration

Instead we compute the particle's position by numeric integration: starting at some initial point $\mathbf{x}(t_0)$ we step along the vector field to compute the position at each subsequent time instant. This type of a problem is called an **initial value problem**.

Euler's Method

Euler's method is the simplest solution to an initial value problem. Euler's method starts from the initial value and takes small time steps along the flow:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{g}(\mathbf{x}, t)$$

Why does this work?

Let's look at a Taylor series expansion of function $\mathbf{x}(t)$:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \frac{d\mathbf{x}}{dt} + \frac{\Delta t^2}{2} \frac{d^2 \mathbf{x}}{dt^2} + \cdots$$

Disregarding higher-order terms and replacing the first derivative with the flow field function yields the equation for the Euler's method.

Other Methods

Euler's method is the simplest numerical method. The error is proportional to Δt^2 . For most cases, the Euler's method is inaccurate and unstable requiring very small steps.

Other methods:

- Midpoint (2nd order Runge-Kutta)
- Higher order Runge-Kutta (4th order, 6th order)
- Adams
- Adaptive Stepsize

Particle in a Force Field

What is a motion of a particle in a force field? The particle moves according to Newton's Law:

$$\frac{d^2\mathbf{x}}{dt^2} = \frac{\mathbf{f}}{m} \quad (\mathbf{f} = ma)$$

The mass *m* of a particle describes the particle's inertial properties: heavier particles are easier to move than lighter particles. In general, the force field f(x, v, t) may depend on the time *t* and particle's position **x** and velocity **v**.

Second-Order Differential Equations

Newton's Law yields an ordinary differential equation of second order:

$$\frac{d^2 \mathbf{x}(t)}{dt^2} = \frac{\mathbf{f}(\mathbf{x}, \mathbf{v}, t)}{m}$$

A clever trick allows us to reuse the same numeric differentiation solvers for first-order differential equations. If we define a new phase space vector **y**, which consists of particle's position **x** and velocity **v**, then we can construct a new first-order differential equation whose solution will also solve the second-order differential equation.

$$\mathbf{y} = \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix}, \quad \frac{d\mathbf{y}}{dt} = \begin{bmatrix} d\mathbf{x} / dt \\ d\mathbf{v} / dt \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{f} / m \end{bmatrix}$$

Particle Animation

```
AnimateParticles(n, \mathbf{y}_0, t_0, t_f)
{
          \mathbf{y} = \mathbf{y}_0
          t = t_0
          DrawParticles(n, y)
          while(t != t_{f}) {
                    \mathbf{f} = \text{ComputeForces}(\mathbf{y}, t)
                    dydt = AssembleDerivative(y, f)
                    \{\mathbf{y}, t\} = ODESolverStep(6n, \mathbf{y}, d\mathbf{y}/dt)
                    DrawParticles(n, y)
          }
```


Particle Animation [Reeves et al. 1983]

Start Trek, The Wrath of Kahn

Particle Modeling [Reeves et al. 1983]

Lecture 14

Overview

Keyframing and interpolation Interpolation of rotations, quaternions Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids

Rigid-Body Dynamics

We could compute the motion of a rigid-body by computing the motion of all constituent particles. However, a rigid body does not deform and position of few of its particles is sufficient to determine the state of the body in a phase space. We'll start with a special particle located at the body's center of mass.

Net Torque

Rigid-Body Equation of Motion

$$\frac{d}{dt}\mathbf{y}(t) = \frac{d}{dt} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{R}(t) \\ M\mathbf{v}(t) \\ I(t)\mathbf{\omega}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{v}(t) \\ \omega(t) \times \mathbf{R}(t) \\ \mathbf{f}(t) \\ \mathbf{T}(t) \end{bmatrix}$$

 $M\mathbf{v}(t) \rightarrow \text{linear momentum}$ $\mathbf{I}(t)\mathbf{\omega}(t) \rightarrow \text{angular momentum}$

Simulations with Collisions

Simulating motions with collisions requires that we detect them (collision detection) and fix them (collision response).

Collision Response

The mechanics of collisions are complicated and many mathematical models have been developed. We'll just look at a one simple model, which assumes that when the collision occurs the two bodes exchange collision impulse instantaneously.

Frictionless Collision Model

$$\mathbf{b}_n \cdot \mathbf{v}^+ = -\varepsilon \left(\mathbf{b}_n \cdot \mathbf{v}^- \right)$$

Overview

Keyframing and interpolation Interpolation of rotations, quaternions Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids

Lecture 14

Deformable models

Shape deforms due to contact

Discretize the problem

Animation runs with smaller time steps than rendering (between 1/10,000s and 1/100s)

Images from Debunne et al. 2001

Mass-Spring system

Network of masses and springs

- Express forces
- Integrate

Deformation of springs simulates deformation of objects

FINA

Images from Debunne et al. 2001

🖛 Bsex

Lecture 14

Slide 30

6.837 Fall 2002

[Dorsey 1996]

Implicit Finite Elements

Discretize the problem Express the interrelationship Solve a big system More principled than mass-spring

Explicit Finite Elements

Discretize the problem

Solve locally

Simpler but less stable than implicit

Formally: Finite Elements

We are trying to solve a continuous problem

- Deformation of all points of the object
- Infinite space of functions

We project to a finite set of basis functions

- E.g. piecewise linear, piecewise constant
- We project the equations governing the problem

This results in a big linear system

Cloth animation

Discretize cloth Write physical equations Integrate Collision detection

Image from Meyer et al. 2001

Fluid simulation

Discretize volume of fluid

- Exchanges and velocity at voxel boundary
- Write Navier Stokes equations
 - Incompressible, etc.
- Numerical integration
 - Finite elements, finite differences

Challenges:

- Robust integration, stability
- Speed
- Realistic surface

Figure from Fedkiw et al. 2001

Figure 1: Water being poured into a glass (55x120x55 grid cells). Figure from Enright et al. 2002

Slide 35

Other physical animation

Aging of materials

- Metallic patina, rust
- Water flow
- Stone aging

[Dorsey 1996-1999]

Lecture 14

Slide 36

How do they animate movies?

Keyframing mostly Articulated figures, inverse kinematics Skinning

- Complex deformable skin
- Muscle, skin motion
- **Hierarchical controls**
 - Smile control, eye blinking, etc.
 - Keyframes for these higher-level controls

A huge time is spent building the 3D models, its skeleton and its controls

Physical simulation for secondary motion

- Hair, cloths, water
- Particle systems for "fuzzy" objects

Images from the Maya tutorial

Next time: Texture mapping

