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Computer Animation

Animation Methods
Keyframing
Interpolation
Kinematics
Inverse Kinematics
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Administrative
Office hours

Durand & Teller by appointment
Ngan Thursday 4-7 in W20-575

Deadline for proposal: Friday Nov 1
Meeting with faculty & staff about proposal 

Next week
Web page for appointment
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Animation
4 approaches to animation
Pros ? Cons ?
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Computer-Assisted Animation
Keyframing 

automate the inbetweening
good control
less tedious
creating a good animation

still requires considerable skill
and talent

Procedural animation
describes the motion algorithmically
express animation as a function 

of small number of parameteres
Example: a clock with second, minute and hour hands

hands should rotate together
express the clock motions in terms of a “seconds” variable
the clock is animated by varying the seconds parameter

Example 2: A bouncing ball
Abs(sin(ωt+θ0))*e-kt

ACM © 1987 “Principles of traditional animation 
applied to 3D computer animation”
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Computer-Assisted Animation
Physically Based Animation

Assign physical properties to objects 
(masses, forces, inertial properties) 

Simulate physics by solving equations
Realistic but difficult to control

Motion Capture
Captures style, subtle nuances and realism
You must observe someone do something

ACM© 1988 “Spacetime Constraints”
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Overview
Keyframing and interpolation
Interpolation of rotations, quaternions
Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids

( )tx

( )tv
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Kinematics vs. Dynamics
Kinematics
Describes the positions of the body parts as a function of the 
joint angles.
Dynamics
Describes the positions of the body parts as a function of the 
applied forces.
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Now
Dynamics

ACM© 1988 “Spacetime Constraints”
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Particle
A single particle in 2-D moving in a flow field

Position

Velocity

The flow field function dictates
particle velocity
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Vector Field
The flow field g(x,t) is a vector field that defines a vector for 
any particle position x at any time t.

How would a particle move in this vector field?

1x

2x
( ),tg x
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Differential Equations
The equation v = g(x, t) is a first order differential equation:

The position of the particle is computed by integrating the 
differential equation:

For most interesting cases, this integral cannot be computed 
analytically.
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Numeric Integration
Instead we compute the particle’s position by numeric 
integration: starting at some initial point x(t0) we step along 
the vector field to compute the position at each subsequent 
time instant. This type of a problem is called an initial value 
problem.
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Euler’s Method
Euler’s method is the simplest solution to an initial value 
problem.  Euler’s method starts from the initial value and takes
small time steps along the flow:

Why does this work?

( ) ( ) ( ),t t t t t+ ∆ = + ∆x x g x

Let’s look at a Taylor series expansion of function x(t):

Disregarding higher-order terms and replacing the first 
derivative with the flow field function yields the equation for 
the Euler’s method.
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Other Methods
Euler’s method is the simplest numerical method.  The error is 
proportional to     .  For most cases, the Euler’s method is 
inaccurate and unstable requiring very small steps.

Other methods:
Midpoint (2nd order Runge-Kutta)
Higher order Runge-Kutta (4th order, 6th order)
Adams
Adaptive Stepsize

2t∆

1x

2x
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Particle in a Force Field
What is a motion of a particle in a force field?
The particle moves according to Newton’s Law:

The mass m of a particle describes the particle’s inertial 
properties: heavier particles are easier to move than lighter 
particles.  In general, the force field f(x, v, t) may depend on 
the time t and particle’s position x and velocity v.
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Second-Order Differential Equations
Newton’s Law yields an ordinary differential equation of second 
order:

A clever trick allows us to reuse the same numeric 
differentiation solvers for first-order differential equations.  If 
we define a new phase space vector y, which consists of 
particle’s position x and velocity v, then we can construct a 
new first-order differential equation whose solution will also 
solve the second-order differential equation.
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Particle Animation
AnimateParticles(n, y0, t0, tf)
{

y = y0

t = t0
DrawParticles(n, y)
while(t != tf) {

f = ComputeForces(y, t)
dydt = AssembleDerivative(y, f)
{y, t } = ODESolverStep(6n, y, dy/dt)
DrawParticles(n, y)

}
}
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Particle Animation [Reeves et al. 1983]

Star Trek, The Wrath of Kahn [Reeves et al. 1983]
Start Trek, The Wrath of Kahn
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Particle Modeling [Reeves et al. 1983]
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Overview
Keyframing and interpolation
Interpolation of rotations, quaternions
Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids

( )tx

( )tv
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Rigid-Body Dynamics
We could compute the motion of a rigid-body by computing 
the motion of all constituent particles.  However, a rigid body 
does not deform and position of few of its particles is sufficient 
to determine the state of the body in a phase space.  We’ll 
start with a special particle located at the body’s center of 
mass.
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Net Force
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Net Torque
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Rigid-Body Equation of Motion
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Simulations with Collisions
Simulating motions with collisions requires that we detect them 
(collision detection) and fix them (collision response).
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Collision Response
The mechanics of collisions are complicated and many 
mathematical models have been developed.  We’ll just look at 
a one simple model, which assumes that when the collision 
occurs the two bodes exchange collision impulse 
instantaneously.
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Frictionless Collision Model
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Overview
Keyframing and interpolation
Interpolation of rotations, quaternions
Kimematrics, articulation

Particles

Rigid bodies

Deformable objects, clothes, fluids
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Deformable models
Shape deforms due to contact
Discretize the problem
Animation runs with smaller time steps than rendering 
(between 1/10,000s and 1/100s)

Images from Debunne et al. 2001
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Mass-Spring system
Network of masses and springs
Express forces
Integrate
Deformation of springs simulates deformation of objects

[Dorsey 1996]

F

Images from Debunne et al. 2001
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Implicit Finite Elements 
Discretize the problem 
Express the interrelationship
Solve a big system
More principled than mass-spring

Object Finite
Elements

Large
matricial 
systemSlide from Debunne et al. 2001
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Explicit Finite Elements 
Discretize the problem 
Solve locally
Simpler but less stable than implicit

Object Finite
Elements

Independent
matricial 
systemsSlide from Debunne et al. 2001
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Formally: Finite Elements 
We are trying to solve a continuous problem

Deformation of all points of the object
Infinite space of functions

We project to a finite set of basis functions
E.g. piecewise linear, piecewise constant

We project the equations governing the problem
This results in a big linear system

Object Finite
Elements

Large matricial 
system
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Cloth animation
Discretize cloth 
Write physical equations
Integrate
Collision detection

Image from Meyer et al. 2001
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Fluid simulation
Discretize volume of fluid

Exchanges and velocity at voxel boundary

Write Navier Stokes equations
Incompressible, etc.

Numerical integration
Finite elements, finite differences

Challenges:
Robust integration, stability
Speed
Realistic surface

Figure from Fedkiw et al. 2001

Figure from Enright et al. 2002
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Other physical animation
Aging of materials

Metallic patina, rust
Water flow
Stone aging

[Dorsey 1996-1999]
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How do they animate movies?
Keyframing mostly
Articulated figures, inverse kinematics
Skinning 

Complex deformable skin
Muscle, skin motion

Hierarchical controls
Smile control, eye blinking, etc. 
Keyframes for these higher-level controls

A huge time is spent building the 3D models, its skeleton and 
its controls
Physical simulation for secondary motion

Hair, cloths, water
Particle systems for “fuzzy” objects

Images from the Maya tutorial
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Next time: Texture mapping


