Welcome to 6.837!

Welcome to all students:
- MIT students attending lecture today
 - Sign the circulating sign-up sheet today
 - Fill out web survey (on course page) ASAP
- MIT & SMA students viewing lecture via tape-delay (see SMA course page)
 - Email staff this week (for accurate count to EECS HQ)
 - Fill out web survey linked from course page

Plan for today:
- Introduction to course staff
- Why study graphics?
- What 6.837 is (and isn’t) about
- Course structure and timeline
- Overview of topics, assignments, project
- Projects from previous offerings of 6.837
- Grading policy
- Prerequisites & substitutions

Introductions
- Lecturers:
 - Prof. Fredo Durand (fredo@graphics.lcs.mit.edu)
 - Prof. Seth Teller (teller@graphics.lcs.mit.edu)
- TA’s:
 - Addy Ngan (addy@graphics.lcs.mit.edu)
 - Jingyi Yu (jingyi@graphics.lcs.mit.edu)
- Course Secretary:
 - Bryt Bradley (bryt@graphics.lcs.mit.edu)
- Staff e-mail lists:
 - TA’s only: 6.837-tas@graphics.lcs.mit.edu
 - Entire staff: 6.837-staff@graphics.lcs.mit.edu

Why study graphics?
- To make pretty pictures and funny movies … ?
 - Yes, in part. But in addition…
- To improve:
 - Understanding
 - Expression
 - Communication
- Graphics is (or should be) essential to engineers and the practice of engineering!

Team 18’s final project from 6.837 (F97)
Computer-Aided Design and Engineering Analysis

Effective Human-Computer Interaction (HCI)

Scientific Visualization

Math & Science Education

Entertainment & Games

Military Planning & Rehearsal
So ... why take 6.837?

- By the end of this term, you’ll have the engineering knowledge and skills (in principle) to create or contribute to all of the applications you just saw, and more.

What 6.837 is not about:

- Paint packages (Photoshop)
- CAD packages (AutoCAD)
- Rendering packages (Lightscape)
- Modeling packages (3D Studio, Maya)
- Animation packages (Digimation)
- Graphics APIs (OpenGL, DirectX)
- Modeling/Shading Languages (RenderMan)
- Games / Game Development (...)

... But you may use some or all of these this term.

What 6.837 is about:

- Geometric modeling
- Rendering
- Animation

Simulation

Advanced topics

Structure of 6.837

- Lectures
 - Optional review sessions for prerequisite material
- Assignments (out Thursdays, due following Friday)
 - Web signup (Weeks 1-2)
 - Surveys your technical background, interests, schedule
 - Geometric Modeling & Appearance (Weeks 2-4)
 - Object modeling, scene composition, appearance, Asst’s 1 & 2
 - Rendering (Weeks 4-8)
 - Polygon Rasterization (Wireframe & Solid), Asst’s 3 & 4
 - Ray Casting & Ray Tracing, Asst’s 5 & 6
- Final (team) projects (Weeks 8-14)
 - Brainstorming; proposal; approval
 - Each team meets weekly with “shepherd” TA
 - Writeups, presentations to staff & class at end of term
Geometric Modeling

• Specifying an object’s shape & appearance
 – Shape primitives
 – Generative modeling
 – Transformations
 – Modeling hierarchies
 – Material attributes
 • Color, texture, lighting, etc.
 – Examples (from Ass’ts 1 & 2, object modeling):
 • person sailboat guitar terminator

Rendering (part I): transformation

• Geometry of image formation
 – Modeling transformation
 – Viewing transformation
 – Perspective transformation
 – Viewport transformation

Rendering (part II): sampling

• Discretizing (or rasterizing) continuous geometry onto a discrete pixel grid
 – Shape representation & pixel resolution
 – Sampling & interpolation method

Scan-conversion machinery

• Assignment 3 (ivscan wireframe):

Rendering (part III): shading

• Simulating the interaction of light with surface (and sub-surface) materials in scene
 – Material properties (color, shininess, …)
 – Opacity (occlusion)

Polygon fill, with depth-buffering

• Assignment 4 (ivscan solid)
Animation

• Key-framing
 – Temporal sampling & interpolation
• Articulation and motion control
• Camera / viewpoint control
• Procedural vs. physically-based methods
• Rendering issues (e.g. motion blur)

Simulation

Advanced topics

• Visible/hidden surface algorithms

Advanced topics

• Texture mapping

Advanced topics

• Sampling & anti-aliasing

Advanced topics

• Color & perception
Advanced topics
• Image-based modeling and rendering

Advanced topics
• Parametric curves & surfaces

Advanced topics
• Graphics hardware architectures

Advanced topics
• Special topics (from survey of your interests)

Final project topics & examples
• Teams of 3 or 4 students
• Wide latitude in topic selection:
 – Specialized modeling, rendering effects
 – Animations / short films
 – Physically-based phenomena
 – Connections to text, speech, audio, images, video
 – Modeling tools
 – Geometric Algorithms
 – Scientific Visualization
 – Novel interaction methods
• Previous years’ projects linked from homepage

Modeling
• 3D-ifying comic strips
- Dome of the Rock model

- MIT model and animation

Animations
- Foosball players come to life

- Animation set in Star Market

Physically-based simulation
- Animated solid texture (Dali Animation)
- Parallel radiosity solver
• Physically-based driving simulators

• Physically-based flag simulation

• Rendering with real lighting conditions

Connection to other forms of data
 • Text to speech to animation

• MIDI-synchronized hands & piano keys

• Insertion of synthetic character into video
Geometric Algorithms

- 3D morphing

Interaction

- Adventure game

- Networked, multi-user interior design
Architecture studies
• Gate-level hardware 3D accelerator

Other final projects (linked from 6.837 homepage)
• Meteor Animation, Blowing Curtain, Interactive Parallel Radiosity, Acoustic Simulation (Concert Halls), Trick or Treat (Gothic Animation), Luxo Jr. Animation Sequel, Dome of the Rock, 3D Modeler for Kids, Precomputing Ray Tracer, Monk Animation (Douglas Adams), Foosball Players Come to Life (Animation), MIT Model & Animation, Relativistic Ray-Tracing, Human in Free-Fall, The Job (Movie), 3D Drilling for Tumors in MRI Scans Using PHANToM, Dali Animation, Flag modeling & animation, 3D Morphing, Fluid Simulation with Haptics, Evolution of Movement, Tron Gone Wrong

Grading policy
• Programming assignments ~50% of grade
 – To be completed individually
 – Late policy:
 • Assignments time-stamped by athena turnin
 • No late assignments accepted, period, except with a letter from a Dean.
• Team projects ~50% of grade, involving:
 – Thoughtful initial proposal (3-5 pages)
 – Satisfactory weekly progress
 – Coherent final writeup & presentation
 – Overall technical merit of work
• No quizzes, exams or final

Stated prerequisites:
• 18.06 (Linear Algebra):
 – Vectors (dot, cross products, etc.)
 – Matrices and matrix operators
 – Solving linear systems of equations
 – Bases: spanning, orthonormal, transformations
• 6.046J (Algorithms):
 – Orders of growth
 – Upper & lower bounds
 – Reductions; adversary arguments
 – Sorting, tree traversal, convex hulls, etc.
• Programming experience:
 – Basic knowledge of C, C++, or Java assumed

Prerequisite substitutions:
• Analogous coursework
• Relevant experience
• Osmosis
• An enthusiastic attitude
• Tolerance for pain
• Evening review sessions with the TA’s

• Bottom line: prereq’s are not enforced; take the class if you so choose

Questions?
Assignment 0:
• Fill out survey linked from course web page by **5pm Friday, Sept. 13**th (earlier if possible)

See you Tuesday!