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Controlling Animation

Boundary-Value 
Problems
Shooting Methods
Constrained 
Optimization
Robot Control
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Computer Animation

Story 
(concept, storyboard)

Production 
(modeling, motion, lighting)
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Motion
Keyframing

� Interpolates motion from “key” positions
� Perfect control
� Can be tedious
� No realism
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F ma=

Motion
Simulation

� Solves equations of motion to compute motion
� Realistic motion
� Automatic generation
� Difficult to control
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Controlling Simulation
What initial velocity will cause the hat to land on the coatrack? 
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Production
Story dictates the motion.  Animator’s must control the 
behavior.
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Simulation Function S(t, u)

S

simulator

( ) ( , )q t S t u=

( )q t

u

u
initial 
velocity

nonlinear
not continuous
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How do we compute S(t, u)?
Solve an initial-value problem: numerically integrate the first-
order differential equation...detect collisions...apply impulses
when collisions occur. 
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Boundary-Value Problem
A solution to an initial value problem is a motion that is the 
solution to a differential equation with the specified initial 
value.  A solution to a boundary value must also solve the 
ordinary differential equation and match the specified 
boundary values (initial, final, or any other).
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Boundary-Value Problem
What initial velocity will cause the hat to land on the coatrack? 

0 0,x R

1 1,x R
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Solution by Shooting
Shooting Method

� Pick initial linear and angular velocity u = (v, ω)
� Simulate with initial value q0=(x0, R0, u) to compute the simulation 

function S(t, u)
� Repeat until S(t, u) matches the other boundary value x1, R1

Problem
� The initial linear and angular velocity are described by 6 parameters.
� Exploring a parameter space of high-dimension requires many 

samples: number of points in a uniform grid grows exponentially.

n 2n 3n
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Shooting Method
We can combat the high dimensional parameter spaces with 
clever sampling techniques or derivative-based methods.

Sampling techniques
� Importance Sampling
� Markov Chain Monte Carlo

Derivative-based Methods
� Gradient descent
� Newton’s root finding method
� Human assistance (interaction)
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Interactive Control
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Interactive Control

( , )S t uu
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Interactive Control
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Interactive Control
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More Parameters
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More Constraints
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More Bodies
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Active Characters
What about objects that have self-propelling muscles and 
forces.  How can we compute their motion automatically?
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Constrained Optimization
� Body, muscle and force degrees of freedom: q(t)
� Constraints

� Pose Cp

� Mechanical Cm

� Dynamics Cd

� Objective Function E(q(t))
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Controller Approach
Roboticists address almost identical problems in robot design.  
How should we control a robot to make it walk or run?  Similar  
techniques have been applied for problems in computer 
animation.

� Biomechanics data and observations
� Feedback controllers

� designed by hand
� simulated annealing
� generate-and-test strategy
� parameter estimation and parallel optimization techniques
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Next Time
Research in the MIT Computer Graphics Group


