

Flawed Solution								
Linearly interpolate each entry independently Example: M_0 is identity and M_1 is 90-deg rotation around x-axis								
Interpolate	(0 0	0 1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 0 -1	0 1 0])=	= [1 0 0	0 0.5 –0.5	0 0.5 0.5
Is the result a rotation matrix?								
The result R is not a rotation matrix. For example, check that RR^{T} does not equal identity. In short, this interpolation does not preserve the rigidity (angles and lengths) of the transformation.								
Lecture Lecture	e 21		Sli	de 20		6.83	7 Fall 2001	Nent 🚸

Euler Angles

An euler angle is a rotation about a single axis. Any orientation can be described composing three rotation around each coordinate axis. We can visualize the action of the Euler angles: each loop is a rotation around one coordinate axis.

Interpolating Euler Angles

Natural orientation representation: three angles for three degrees of freedom

Unnatural interpolation: A rotation of 90-degrees first around the z-axis and then around the y-axis has the effect of a 120-degree rotation around the axis (1, 1, 1). But rotation of 30-degrees around the z- and y-axis does not have the effect of a 40-degree rotation around the axis (1, 1, 1).

Slide 22

6 837 Fall 2001

Gimbal lock: two or more axis align resulting in a loss of rotation degrees of freedom. For example, if the green loop in previous slide aligns with the red loop then both the rotation around the blue loop and the rotation around the red loop produces identical rotation.

4 DACE

Lecture 21

Kinematics vs. Dynamics

Kinematics

Describes the positions of the body parts as a function of the joint angles.

Dynamics

4 DACE

Lecture 21

Describes the positions of the body parts as a function of the applied forces.

Slide 30

6.837 Fall 2001

