
1

Lecture 21 Slide 1 6.837 Fall 2001

Texture-Mapping Tricks

Combining Textures

Filtering Textures

Textures and Shading

Bump Mapping

Solid Textures

Lecture 21 Slide 2 6.837 Fall 2001

Texture Mapping Modes
Label textures
Projective textures
Environment maps
Shadow maps
…

Lecture 21 Slide 3 6.837 Fall 2001

The Best of All Worlds
All these texture mapping modes are great!

The problem is, no one of them does everything well.

Suppose we allowed several textures to be applied to each primitive
during rasterization.

Lecture 21 Slide 4 6.837 Fall 2001

Multipass vs. Multitexture
Multipass (the old way) - Render the image in multiple passes, and "add"
the results.

Multitexture - Make multiple texture accesses within the rasterizing loop
and "blend" results.

Blending approaches:

Texture modulation

Alpha Attenuation

Additive textures

Weird modes

2

Lecture 21 Slide 5 6.837 Fall 2001

Texture Mapping in Quake
Quake uses light maps in addition to texture maps. Texture maps are used
to add detail to surfaces, and light maps are used to store pre-computed
illumination. The two are multiplied together at run-time, and cached for
efficiency.

Resolution High Low

Instanced Yes No

Data RGB Intensity

Texture
Maps

Light Maps

Light map image
by Nick Chirkov

Lecture 21 Slide 6 6.837 Fall 2001

When texture mapping it is rare that the screen-space sampling density
matches the sampling density of the texture. Typically one of two things
can occur:

Sampling Texture Maps

Oversampling of the texture or Undersampling of the texture

In the case of oversampling we already know what to do...
Interpolation (review on Antialiasing and Resampling). But, how do
we handle undersampling?

Lecture 21 Slide 7 6.837 Fall 2001

How Bad Does it Look?
Let's take a look at what undersampling looks like:

Notice how details in the texture, in particular the mortar between
the bricks, tend to pop (disappear and reappear).

This popping is most noticeable around details (parts of the texture
with a high-spatial frequency). This is indicative of aliasing (high-
frequency details showing up in areas where we expect to see low
frequencies).

Lecture 21 Slide 8 6.837 Fall 2001

We've Seen this Sort of Thing Before

Remember... Aliasing?
This was the phenomenon that occurred when we undersampled a
signal. It caused certain high frequency features to appear as low
frequencies.

To eliminate aliasing we had to either band limit (low pass filter) our input
signal or sample it at a higher rate:

3

Lecture 21 Slide 9 6.837 Fall 2001

Spatial Filtering
In order to get the sort of images the we expect, we must prefilter the
texture to remove the high frequencies that show up as artifacts in the
final rendering. The prefiltering required in the undersampling case is
basically a spatial integration over the extent of the sample.

We could perform this filtering while texture mapping (during
rasterization), by keeping track of the area enclosed by
sequential samples and performing the integration as required.
However, this would be expensive. The most common solution to
undersampling is to perform prefiltering prior to rendering.

Lecture 21 Slide 10 6.837 Fall 2001

MIP Mapping is one popular technique for precomputing and performing this prefiltering. MIP is
an acronym for the latin phrase multium in parvo, which means "many in a small place". The
technique was first described by Lance Williams. The basic idea is to construct a pyramid of
images that are prefiltered and resampled at sampling frequencies that are a binary fractions
(1/2, 1/4, 1/8, etc) of the original image's sampling.

MIP Mapping

Computing this series of filtered images requires only a small fraction of addtional storage
over the original texture (How small of a fraction?).

While rasterizing we compute the index of the
decimated image that is sampled at a rate
closest to the density of our desired sampling
rate (rather than picking the closest one can in
also interpolate between pyramid levels).

Lecture 21 Slide 11 6.837 Fall 2001

Storing MIP Maps
One convenient method of storing a MIP map is shown below. (It also nicely
illustrates the 1/3 overhead of maintaining the MIP map).

We must make a few small modifications to
our rasterizer to compute the MIP map level.
Recall the equations that we derived for
mapping screen-space interpolants to their 3-
space equivalent.

Lecture 21 Slide 12 6.837 Fall 2001

What we'd like to find is the step size that a uniform step in screen-space
causes in three-space, or, in other words how a screen-space change relates to
a 3-space change. This sounds like the derivatives, (du/dt, dv/dt). They can
be computed simply using the chain rule:

Finding the MIP level

Notice that the term being squared under the numerator is just the w plane
equation that we are already computing. The remaining terms are constant for a
given rasterization. Thus all we need to do to compute the derivative is a square
the w accumulator and multiply it by a couple of constants.

Now, we know how a step in screen-space relates to a step in 3-space. So how do
we translate this to an index into our MIP table?

4

Lecture 21 Slide 13 6.837 Fall 2001

MIP Indices
Actually, you have a choice of ways to translate this gradient value into a MIP
level.

This also brings up one of the shortcomings of MIP mapping. MIP mapping assumes
that both the u and v components of the texture index are undergoing a uniform
scaling, while in fact the terms du/dt and dv/dt are relatively independent. Thus,
we must make some sort of compromise. Two of the most common approaches are
given below:

The differences between these level selection methods is illustrated by the
accompanying figure.

Lecture 21 Slide 14 6.837 Fall 2001

Summed-Area Tables
There are other approaches to computing this prefiltering integration on the fly. One,

which was introduced by Frank Crow is called a summed-area table. Basically, a summed-
area table is a tabularized two-dimensional cumulative distribution function. Imagine having a
2-D table of numbers the cumulative distribution function could be found as shown below.

T(x1, y1) - T(x0, y1) - T(x1, y0) + T(x0, y0)

To find the sum of region contained in a box bounded by (x0, y0) and (x1, y1):

This approach can be used to compute the integration of pixels that lie under
a pixel by dividing the resulting sum by the area of the rectangle,

(y1 - y0)(x1 - x0).

With a little more work you can compute the area under any four-sided
polygon (How?).

Lecture 21 Slide 15 6.837 Fall 2001

Summed-Area Tables
How much storage does a summed-area table require?

Does it require more or less work per pixel than a MIP map?

What sort of low-pass filter does a summed-area table represent?

What do you remember about this sort of filter?

These nice images were originally grabbed from a link on the http://www.gris.unituebingen.de/ web page.

No filtering MIP mapping Summed-Area Table

Lecture 21 Slide 16 6.837 Fall 2001

Phototextures
To this point we've only used textures as labels over geometry.

Their applications are much broader, however.

Simple extensions include:

Spatially varying surface properties:
º The diffuse shading coefficient, kd, could be stored as a texture.

º Likewise for the intrinsic color, ka, ks, and nshiny.

Textures can also be used in a lot of other ways

5

Lecture 21 Slide 17 6.837 Fall 2001

Adding Texture Mapping to Illumination
Texture mapping can be used to alter some or all of the constants in the
illumination equation. We can simply use the texture as the final color for the pixel,
or we can just use it as diffuse color, or we can use the texture to alter the normal,
or... the possibilities are endless!

Phong's Illumination Model

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

Lecture 21 Slide 18 6.837 Fall 2001

Bump Mapping
Textures can be used to alter the surface normal of an object. This does not change the actual
shape of the surface -- we are only shading it as if it were a different shape! This technique is
called bump mapping. The texture map is treated as a single-valued height function. The
value of the function is not actually used, just its partial derivatives. The partial derivatives tell
how to alter the true surface normal at each point on the surface to make the object appear
as if it were deformed by the height function.

Since the actual shape of the object does not change, the silhouette edge of the object will
not change. Bump Mapping also assumes that the Illumination model is applied at every pixel
(as in Phong Shading or ray tracing).

Sphere w/Diffuse Texture

Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Lecture 21 Slide 19 6.837 Fall 2001

Bump mapping
TvuzvuyvuxP)],(),,(),,([=

v

vu PPN
vvv

×=

N
NvuBPP v

v
vv),(+=′

() ()
4444 34444 21

v

vvvv
vv

v
D

uvvu

N
PNBPNBNN ×−×+≈′

N
v

vP
v

uP
v

vPN
vv

×

uPN
vv

×−

N ′
v

D
v

∆
∆+−∆−=

2
),(),(tsBtsBBu

∆
∆+−∆−=

2
),(),(tsBtsBBv

Compute bump map partials
by numerical differentiation

Lecture 21 Slide 20 6.837 Fall 2001

N
NB

N
NBPP uu

uu v

v

v

v
vv

++=′

N
NB

N
NBPP vv

vv v

v

v

v
vv

++=′

Bump mapping derivation

N
NvuBPP v

v
vv),(+=′

vu PPN ′×′=′
vvv

2
)()()(

N

NNBB
N
NPB

N
PNBPPN vuuvvu

vu v

vv

v

vv

v

vv
vvv ×+×+×+×≈′

0≈

0≈
small... very is Assume B

so 0 and N ,But =××−=×=× NNPNPNPP uuvu

vvvvvvvvv

N
PNB

N
PNBNN uvvu v

vv

v

vv
vv)()(×−×+≈′

6

Lecture 21 Slide 21 6.837 Fall 2001

More Bump Map Examples

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

Lecture 21 Slide 22 6.837 Fall 2001

One More Bump Map Example

Notice that the shadow boundaries remain unchanged.

Lecture 21 Slide 23 6.837 Fall 2001

Displacement Mapping
We use the texture map to actually move the surface point. This is called
displacement mapping. How is this fundamentally different than bump
mapping?

The geometry must be displaced before visibility is determined. Is this
easily done in the graphics pipeline? In a ray-tracer?

Lecture 21 Slide 24 6.837 Fall 2001

Displacement Mapping Example

It is possible to use displacement maps
when ray tracing.

Image from

Geometry Caching for
Ray-Tracing Displacement Maps

by Matt Pharr and Pat Hanrahan.

7

Lecture 21 Slide 25 6.837 Fall 2001

Another Displacement Mapping Example

Image from Ken Musgrave

Lecture 21 Slide 26 6.837 Fall 2001

Three Dimensional or Solid Textures
The textures that we have discussed to this
point are two-dimensional functions mapped
onto two-dimensional surfaces. Another
approach is to consider a texture as a
function defined over a three-dimensional
surface. Textures of this type are called solid
textures.

Solid textures are very effective at
representing some types of materials such as
marble and wood. Generally, solid textures
are defined procedural functionsrather than
tabularized or sampled functions as used in
2-D (Any guesses why?)

The approach that we will explore is based
on An Image Synthesizer, by Ken Perlin,
SIGGRAPH '85.

The vase to the right is from this paper.

Lecture 21 Slide 27 6.837 Fall 2001

Noise and Turbulence
When we say we want to create an "interesting" texture, we usually don't
care exactly what it looks like -- we're only concerned with the overall
appearance. We want to add random variations to our texture, but in a
controlled way. Noise and turbulence are very useful tools for doing just
that.

A noise function is a continuous function that varies throughout space at
a uniform frequency. To create a simple noise function, consider a 3D
lattice, with a random value assigned to each triple of integer
coordinates:

Lecture 21 Slide 28 6.837 Fall 2001

Interpolating Noise
To calculate the noise value of any point in space, we first determine
which cube of the lattice the point is in. Next, we interpolate the desired
value using the 8 corners of the cube:

Trilinear interpolation is illustrated above. Higher-order interpolation can
also be used.

8

Lecture 21 Slide 29 6.837 Fall 2001

Evaluating Noise
Since noise is a 3D function, we can evaluate it at any point we want.
We don't have to worry about about mapping the noise to the object,
we just use (x, y, z) at each point as our 3D texture coordinates! It is as
if we are carving our object out of a big block of noise.

Original Object Trilinear Noise Triquadratic Noise

Lecture 21 Slide 30 6.837 Fall 2001

Turbulence
Noise is a good start, but it looks pretty ugly all by itself. We can use noise
to make a more interesting function called turbulence. A simple turbulence
function can be computed by summing many different frequencies of noise
functions:

One Frequency Two Frequencies Three Frequencies Four Frequencies

Now we're getting somewhere. But even turbulence is rarely used all
by itself. We can use turbulence to build even more fancy 3D
textures...

Lecture 21 Slide 31 6.837 Fall 2001

Marble Example

We can use turbulence to generate beautiful 3D
marble textures, such as the marble vase created by
Ken Perlin. The idea is simple. We fill space with
black and white stripes, using a sine wave function.
Then we use turbulence at each point to distort those
planes.

By varying the frequency of the sin function,
you get a few thick veins, or many thin veins. Varying
the amplitude of the turbulence function controls how
distorted the veins will be.

Marble = sin(f * (x + A*Turb(x,y,z)))

Lecture 21 Slide 32 6.837 Fall 2001

Next Time - Radiosity

