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Texture-Mapping Tricks

Combining Textures

Filtering Textures

Textures and Shading

Bump Mapping

Solid Textures
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Texture Mapping Modes
Label textures
Projective textures
Environment maps
Shadow maps
…

Lecture 21 Slide 3 6.837 Fall 2001

The Best of All Worlds
All these texture mapping modes are great!        

The problem is, no one of them does everything well.        

Suppose we allowed several textures to be applied to each primitive 
during rasterization.
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Multipass vs. Multitexture
Multipass (the old way) - Render the image in multiple passes, and "add" 
the results.

Multitexture - Make multiple texture accesses within the rasterizing loop 
and "blend" results.

Blending approaches:

Texture modulation

Alpha Attenuation

Additive textures

Weird modes



2

Lecture 21 Slide 5 6.837 Fall 2001

Texture Mapping in Quake
Quake uses light maps in addition to texture maps.  Texture maps are used 
to add detail to surfaces, and light maps are used to store pre-computed 
illumination.  The two are multiplied together at run-time, and cached for 
efficiency.

Resolution High Low

Instanced Yes No

Data RGB Intensity

Texture 
Maps

Light Maps

Light map image
by Nick Chirkov
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When texture mapping it is rare that the screen-space sampling density 
matches the sampling density of the texture. Typically one of two things 
can occur:

Sampling Texture Maps

Oversampling of the texture or Undersampling of the texture

In the case of oversampling we already know what to do... 
Interpolation (review on Antialiasing and Resampling). But, how do 
we handle undersampling?
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How Bad Does it Look?
Let's take a look at what undersampling looks like:

Notice how details in the texture, in particular the mortar between 
the bricks, tend to pop (disappear and reappear).

This popping is most noticeable around details (parts of the texture 
with a high-spatial frequency). This is indicative of aliasing (high-
frequency details showing up in areas where we expect to see low
frequencies). 
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We've Seen this Sort of Thing Before

Remember... Aliasing?
This was the phenomenon that occurred when we undersampled a 
signal. It caused certain high frequency features to appear as low 
frequencies. 

To eliminate aliasing we had to either band limit (low pass filter) our input 
signal or sample it at a higher rate:
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Spatial Filtering
In order to get the sort of images the we expect, we must prefilter the 
texture to remove the high frequencies that show up as artifacts in the 
final rendering. The prefiltering required in the undersampling case is 
basically a spatial integration over the extent of the sample.

We could perform this filtering while texture mapping (during 
rasterization), by keeping track of the area enclosed by 
sequential samples and performing the integration as required. 
However, this would be expensive. The most common solution to 
undersampling is to perform prefiltering prior to rendering.
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MIP Mapping is one popular technique for precomputing and performing this prefiltering. MIP is 
an acronym for the latin phrase multium in parvo, which means "many in a small place". The 
technique was first described by Lance Williams. The basic idea is to construct a pyramid of 
images that are prefiltered and resampled at sampling frequencies that are a binary fractions 
(1/2, 1/4, 1/8, etc) of the original image's sampling.

MIP Mapping

Computing this series of filtered images requires only a small fraction of addtional storage 
over the original texture (How small of a fraction?).

While rasterizing we compute the index of the 
decimated image that is sampled at a rate 
closest to the density of our desired sampling 
rate (rather than picking the closest one can in 
also interpolate between pyramid levels).
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Storing MIP Maps
One convenient method of storing a MIP map is shown below. (It also nicely 
illustrates the 1/3 overhead of maintaining the MIP map).

We must make a few small modifications to 
our rasterizer to compute the MIP map level. 
Recall the equations that we derived for 
mapping screen-space interpolants to their 3-
space equivalent.
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What we'd like to find is the step size that a uniform step in screen-space 
causes in three-space, or, in other words how a screen-space change relates to 
a 3-space change. This sounds like the derivatives, ( du/dt, dv/dt ). They can 
be computed simply using the chain rule:

Finding the MIP level

Notice that the term being squared under the numerator is just the w plane 
equation that we are already computing. The remaining terms are constant for a 
given rasterization. Thus all we need to do to compute the derivative is a square 
the w accumulator and multiply it by a couple of constants.

Now, we know how a step in screen-space relates to a step in 3-space. So how do 
we translate this to an index into our MIP table?
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MIP Indices
Actually, you have a choice of ways to translate this gradient value into a MIP 
level.

This also brings up one of the shortcomings of MIP mapping. MIP mapping assumes 
that both the u and v components of the texture index are undergoing a uniform 
scaling, while in fact the terms du/dt and dv/dt are relatively independent. Thus, 
we must make some sort of compromise. Two of the most common approaches are 
given below:

The differences between these level selection methods is illustrated by the 
accompanying figure.
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Summed-Area Tables
There are other approaches to computing this prefiltering integration on the fly. One, 

which was introduced by Frank Crow is called a summed-area table. Basically, a summed-
area table is a tabularized two-dimensional cumulative distribution function. Imagine having a 
2-D table of numbers the cumulative distribution function could be found as shown below.

T(x1, y1) - T(x0, y1) - T(x1, y0) + T(x0, y0)

To find the sum of region contained in a box bounded by (x0, y0) and (x1, y1): 

This approach can be used to compute the integration of pixels that lie under 
a pixel by dividing the resulting sum by the area of the rectangle,

(y1 - y0)(x1 - x0).

With a little more work you can compute the area under any four-sided 
polygon (How?). 
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Summed-Area Tables
How much storage does a summed-area table require?

Does it require more or less work per pixel than a MIP map?

What sort of low-pass filter does a summed-area table represent?

What do you remember about this sort of filter?

These nice images were originally grabbed from a link on the http://www.gris.unituebingen.de/ web page.

No filtering MIP mapping Summed-Area Table
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Phototextures
To this point we've only used textures as labels over geometry.

Their applications are much broader, however.

Simple extensions include:

Spatially varying surface properties:
º  The diffuse shading coefficient, kd, could be stored as a texture.

º  Likewise for the intrinsic color, ka, ks, and nshiny.

Textures can also be used in a lot of other ways
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Adding Texture Mapping to Illumination
Texture mapping can be used to alter some or all of the constants in the 
illumination equation. We can simply use the texture as the final color for the pixel, 
or we can just use it as diffuse color, or we can use the texture to alter the normal, 
or... the possibilities are endless!

Phong's Illumination Model

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color
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Bump Mapping
Textures can be used to alter the surface normal of an object. This does not change the actual 
shape of the surface -- we are only shading it as if it were a different shape! This technique is 
called bump mapping. The texture map is treated as a single-valued height function. The 
value of the function is not actually used, just its partial derivatives. The partial derivatives tell 
how to alter the true surface normal at each point on the surface to make the object appear 
as if it were deformed by the height function. 

Since the actual shape of the object does not change, the silhouette edge of the object will 
not change. Bump Mapping also assumes that the Illumination model is applied at every pixel 
(as in Phong Shading or ray tracing).

Sphere w/Diffuse Texture

Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map
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Bump mapping
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Compute bump map partials 
by numerical differentiation
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More Bump Map Examples

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map
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One More Bump Map Example

Notice that the shadow boundaries remain unchanged.
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Displacement Mapping
We use the texture map to actually move the surface point. This is called 
displacement mapping. How is this fundamentally different than bump 
mapping?

The geometry must be displaced before visibility is determined. Is this 
easily done in the graphics pipeline? In a ray-tracer?
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Displacement Mapping Example

It is possible to use displacement maps 
when ray tracing.

Image from

Geometry Caching for 
Ray-Tracing Displacement Maps

by Matt Pharr and Pat Hanrahan. 
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Another Displacement Mapping Example

Image from Ken Musgrave
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Three Dimensional or Solid Textures
The textures that we have discussed to this 
point are two-dimensional functions mapped 
onto two-dimensional surfaces. Another 
approach is to consider a texture as a 
function defined over a three-dimensional 
surface. Textures of this type are called solid 
textures.

Solid textures are very effective at 
representing some types of materials such as 
marble and wood. Generally, solid textures 
are defined procedural functionsrather than 
tabularized or sampled functions as used in 
2-D (Any guesses why?)

The approach that we will explore is based 
on An Image Synthesizer, by Ken Perlin, 
SIGGRAPH '85.

The vase to the right is from this paper.
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Noise and Turbulence
When we say we want to create an "interesting" texture, we usually don't 
care exactly what it looks like -- we're only concerned with the overall 
appearance. We want to add random variations to our texture, but in a 
controlled way. Noise and turbulence are very useful tools for doing just 
that.

A  noise function is a continuous function that varies throughout space at 
a uniform frequency. To create a simple noise function, consider a 3D 
lattice, with a random value assigned to each triple of integer 
coordinates:
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Interpolating Noise
To calculate the noise value of any point in space, we first determine 
which cube of the lattice the point is in. Next, we interpolate the desired 
value using the 8 corners of the cube:

Trilinear interpolation is illustrated above. Higher-order interpolation can 
also be used.
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Evaluating Noise
Since noise is a 3D function, we can evaluate it at any point we want. 
We don't have to worry about about mapping the noise to the object, 
we just use (x, y, z) at each point as our 3D texture coordinates! It is as 
if we are carving our object out of a big block of noise.

Original Object Trilinear Noise Triquadratic Noise
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Turbulence
Noise is a good start, but it looks pretty ugly all by itself. We can use noise 
to make a more interesting function called turbulence. A simple turbulence 
function can be computed by summing many different frequencies of noise 
functions:

One Frequency Two Frequencies Three Frequencies Four Frequencies

Now we're getting somewhere. But even turbulence is rarely used all 
by itself. We can use turbulence to build even more fancy 3D 
textures... 
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Marble Example

We can use turbulence to generate beautiful 3D 
marble textures, such as the marble vase created by 
Ken Perlin. The idea is simple. We fill space with 
black and white stripes, using a sine wave function. 
Then we use turbulence at each point to distort those 
planes. 

By varying the frequency of the sin function, 
you get a few thick veins, or many thin veins. Varying 
the amplitude of the turbulence function controls how 
distorted the veins will be.

Marble = sin(f * (x + A*Turb(x,y,z)))
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Next Time - Radiosity


