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Illumination and Shading

Light Sources 

Empirical Illumination 

Shading 

Transforming Normals 
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Illumination Models
Illumination

The transport luminous flux
from light sources between 
points via direct and indirect paths 

Lighting
The process of computing the luminous 
intensity reflected from a specified 3-D point 

Shading
The process of assigning a colors to a pixels 

Illumination Models
Simple approximations of light transport 
Physical models of light transport
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Two Components of Illumination
Light Sources (Emitters)
Emission Spectrum (color) 
Geometry (position and direction) 
Directional Attenuation 
Surface Properties (Reflectors)
Reflectance Spectrum (color) 
Geometry (position, orientation, and micro-structure) 
Absorption 
Approximations
Only direct illumination from the emitters to the reflectors
Ignore the geometry of light emitters, and consider only the 
geometry of reflectors
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Ambient Light Source
Even though an object in a scene is not directly lit it will still be 
visible. This is because light is reflected indirectly from nearby 
objects. A simple hack that is commonly used to model this 
indirect illumination is to use of an ambient light source. 
Ambient light has no spatial or directional characteristics. The
amount of ambient light incident on each object is a constant 
for all surfaces in the scene. An ambient light can have a color. 
The amount of ambient light that is reflected by an object is 
independent of the object's position or orientation. Surface 
properties are used to determine how much ambient light is 
reflected.
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Directional Light Sources
All of the rays from a directional light source have a common 
direction, and no point of origin. It is as if the light source was 
infinitely far away from the surface that it is illuminating. 
Sunlight is an example of an infinite light source. 

The direction from a surface to a light source is important for 
computing the light reflected from the surface. With a 
directional light source this direction is a constant for every 
surface. A directional light source can be colored. 
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Point Light Sources
The point light source emits rays in radial directions from its 
source. A point light source is a fair approximation to a local 
light source such as a light bulb. 

The direction of the light to each point on a surface changes 
when a point light source is used. Thus, a normalized vector to 
the light emitter must be computed for each point that is 
illuminated.
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Other Light Sources
Spotlights 

� Point source whose intensity falls off 
away from a given direction 

� Requires a color, a point, a direction, 
parameters that control the rate of fall 
off 

Area Light Sources 
� Light source occupies a 2-D area 

(usually a polygon or disk) 
� Generates soft shadows 

Extended Light Sources 
� Spherical Light Source 
� Generates soft shadows
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Ideal Diffuse Reflection
First, we will consider a particular type of surface called an 
ideal diffuse reflector. An ideal diffuse surface is, at the 
microscopic level a very rough surface. Chalk is a good 
approximation to an ideal diffuse surface. Because of the 
microscopic variations in the surface, an incoming ray of light 
is equally likely to be reflected in any direction over the 
hemisphere.
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Lambert's Cosine Law

Ideal diffuse reflectors reflect light according to Lambert's cosine law, 
(there are sometimes called Lambertian reflectors). Lambert's law states 
that the reflected energy from a small surface area in a particular direction 
is proportional to cosine of the angle between that direction and the 
surface normal. Lambert's law determines how much of the incoming light 
energy is reflected. Remember that the amount energy that is reflected in 
any one direction is constant in this model. In other words the reflected 
intensity is independent of the viewing direction. The intensity does 
however depend on the light source's orientation relative to the surface, 
and it is this property that is governed by Lambert's law.
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Computing Diffuse Reflection
The angle between the surface normal and the incoming light 
ray is called the angle of incidence and we can express a 
intensity of the light in terms of this angle. 
The Ilight term represents the intensity of the incoming light at 
the particular wavelength (the wavelength determines the 
light's color). The kd term represents the diffuse reflectivity of 
the surface at that wavelength. 
In practice we use vector analysis to compute cosine term 
indirectly. If both the normal vector and the incoming light 
vector are normalized (unit length) then diffuse shading can be 
computed as follows: 

Lecture 15 Slide 11 6.837 Fall 2001

Diffuse Lighting Examples
We need only consider angles from 0 to 90 degrees. Greater 
angles (where the dot product is negative) are blocked by the 
surface, and the reflected energy is 0. Below are several 
examples of a spherical diffuse reflector with a varying lighting 
angles. 

Why do you think spheres are used as examples when 
shading?
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Specular Reflection
A second surface type is called a specular reflector. 
When we look at a shiny surface, such as polished 
metal or a glossy car finish, we see a highlight, or 
bright spot. Where this bright spot appears on the 
surface is a function of where the surface is seen from. 
This type of reflectance is view dependent.   
At the microscopic level a specular reflecting surface is 
very smooth, and usually these microscopic surface 
elements are oriented in the same direction as the 
surface itself. Specular reflection is merely the mirror 
reflection of the light source in a surface. Thus it should 
come as no surprise that it is viewer dependent, since if 
you stood in front of a mirror and placed your finger 
over the reflection of a light, you would expect that you 
could reposition your head to look around your finger 
and see the light again. An ideal mirror is a purely 
specular reflector. 
In order to model specular reflection we need to 
understand the physics of reflection.
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Snell's Law
Reflection behaves according to Snell's law:

� The incoming ray, the surface normal, 
and the reflected ray all lie in a 
common plane.

� The angle that the reflected ray forms 
with the surface normal is determined 
by the angle that the incoming ray 
forms with the surface normal, and 
the relative speeds of light of the 
mediums in which the incident and 
reflected rays propagate according to 
the following expression. 
(Note: nl and nr are the indices of 
refraction) 
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Reflection
Reflection is a very special case of Snell's Law where the 
incident light's medium and the reflected rays medium is the 
same. Thus we can simplify the expression to:

l rθ θ=
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Non-ideal Reflectors
Snell's law, however, applies only to ideal mirror
reflectors. Real materials, other than mirrors and 
chrome tend to deviate significantly from ideal 
reflectors. At this point we will introduce an 
empirical model that is consistent with our 
experience, at least to a crude approximation.
In general, we expect most of the reflected light to 
travel in the direction of the ideal ray. However, 
because of microscopic surface variations we 
might expect some of the light to be reflected just 
slightly offset from the ideal reflected ray. As we 
move farther and farther, in the angular sense, 
from the reflected ray we expect to see less light 
reflected. 
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Phong Illumination
One function that approximates this fall off is called the Phong 
Illumination model. This model has no physical basis, yet it is 
one of the most commonly used illumination models in 
computer graphics. 

The cosine term is maximum when the surface is viewed from 
the mirror direction and falls off to 0 when viewed at 90 
degrees away from it. The scalar nshiny controls the rate of this 
fall off.

shiny

specular light cosn
sI k I φ=
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Effect of the nshiny coefficient
The diagram below shows the how the reflectance drops off in 
a Phong illumination model.  For a large value of the nshiny
coefficient, the reflectance decreases rapidly with increasing 
viewing angle.
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Computing Phong Illumination

The V vector is the unit vector in the direction of the viewer 
and the R vector is the mirror reflectance direction. The vector
R can be computed from the incoming light direction and the 
surface normal:

( )
shiny

specular light
ˆ ˆ

n

sI k I V R= ⋅

( )ˆ ˆ ˆ ˆ2R N L N L= ⋅ −
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Blinn & Torrance Variation

( )
shiny

specular light
ˆ ˆ

n

sI k I N H= ⋅

Jim Blinn introduced another approach for computing Phong-
like illumination based on the work of Ken Torrance. His 
illumination function uses the following equation: 

In this equation the angle of specular dispersion is computed 
by how far the surface's normal is from a vector bisecting the 
incoming light direction and the viewing direction. 

On your own you should consider 
how this approach and the previous
one differ. 
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Phong Examples
The following spheres illustrate specular reflections as the 
direction of the light source and the coefficient of shininess is 
varied.
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Putting it all together
Phong Illumination Model

( ) ( )
shiny

total ambient light
ˆ ˆ ˆ ˆ

n

a d sI k I I k N L k V R
 

= + ⋅ + ⋅ 
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Phong Illumination Model

� for each light Ii

� for each color component 
� reflectance coefficients kd, ks, and ka scalars between 0 and 1 

may or may not vary with color
� nshiny scalar integer: 1 for diffuse surface, 100 for metallic 

shiny surfaces
� notice that the specular component does not depend on the 

object color      .

( ) ( )
shiny

lights

total, ambient, , 
1

ˆ ˆ ˆ ˆ
n

a i d s
i

I k O I I k O N L k V R
λ λ λ λ λ

=

 
= + ⋅ + ⋅ 

  
∑

total, ambient, , , , , iI O I I
λ λ λ λ

O
λ
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Where do we Illuminate?
To this point we have discussed how to compute an 
illumination model at a point on a surface. But, at which points
on the surface is the illumination model applied? Where and 
how often it is applied has a noticeable effect on the result. 
Illuminating can be a costly process involving the computation 
of and normalizing of vectors to multiple light sources and the 
viewer. 
For models defined by collections of polygonal facets or 
triangles: 

� Each facet has a common surface normal 
� If the light is directional then the diffuse contribution is 

constant across the facet 
� If the eye is infinitely far away and the light is directional 

then the specular contribution is constant across the 
facet.
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Flat Shading
The simplest shading method applies only one illumination 
calculation for each primitive. This technique is called constant
or flat shading. It is often used on polygonal primitives.

Drawbacks:
� the direction to the light source varies over the facet 
� the direction to the eye varies over the facet 

Nonetheless, often illumination is computed for only a single 
point on the facet. Which one? Usually the centroid.
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Even when the illumination equation is applied at each point of 
the faceted nature of the polygonal nature is still apparent.

To overcome this limitation normals are introduced at each 
vertex. 

� different than the polygon normal 
� for shading only (not backface culling or other 

computations) 
� better approximates smooth surfaces

Facet Shading
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Vertex Normals
If vertex normals are not provided 
they can often be approximated by 
averaging the normals of the facets 
which share the vertex.

This only works if the polygons 
reasonably approximate the 
underlying surface. 

A better approximation can be 
found using a clustering analysis of 
the normals on the unit sphere.
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Gouraud Shading
The Gouraud shading method applies the illumination model on 
a subset of surface points and interpolates the intensity of the
remaining points on the surface. In the case of a polygonal 
mesh the illumination model is usually applied at each vertex 
and the colors in the triangles interior are linearly interpolated 
from these vertex values. 

The linear interpolation can be accomplished using the plane 
equation method discussed in the lecture on rasterizing 
polygons. Notice that facet artifacts are still visible.

Lecture 15 Slide 28 6.837 Fall 2001

Phong Shading
In Phong shading (not to be confused with the Phong illumination model), 
the surface normal is linearly interpolated across polygonal facets, and the 
Illumination model is applied at every point. 
A Phong shader assumes the same input as a Gouraud shader, which 
means that it expects a normal for every vertex. The illumination model is 
applied at every point on the surface being rendered, where the normal at 
each point is the result of linearly interpolating the vertex normals defined 
at each vertex of the triangle. 

Phong shading will usually result in a very smooth appearance, however, 
evidence of the polygonal model can usually be seen along silhouettes.
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Transforming Surface Normals
By now you realize that surface normals are the most 
important geometric surface characteristic used in computing 
illumination models. They are used in computing both the 
diffuse and specular components of reflection. 
However, the vertices of a model do not transform in the same 
way that surface normals do. A naive implementer might 
consider transforming normals by treating them as points 
offset a unit length from the surface. But even this approach 
will not work. Consider the following two dimensional example.

Lecture 15 Slide 30 6.837 Fall 2001

Normals Represent Tangent Spaces
The fundamental problem with transforming normals is largely 
a product of our mental model of what a normal really is. A 
normal is not a geometric property relating to points of of the 
surface, like a quill on a porcupine. Instead normals represent 
geometric properties on the surface. They are an implicit 
representation of the tangent space of the surface at a point. 

In three dimensions the tangent space at a point is a plane. A 
plane can be represented by either two basis vectors, but such 
a representation is not unique. The set of vectors orthogonal 
to such a plane is, however unique and this vector is what we 
use to represent the tangent space, and we call it a normal. 
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Triangle Normals
Now that we understand the geometric implications of a 
normal it is easy to figure out how to transform them. 
On a faceted planar surface vectors in the tangent plane can 
be computed using surface points as follows.

Normals are always orthogonal to the tangent space at a point. 
Thus, given two tangent vectors we can compute the normal 
as follows:

This normal is perpendicular to both of these tangent vectors.

1 1 0 2 2 0,   t p p t p p= − = −

� �
� � � �

1 2n t t= ×

� �
�

1 2 0n t n t⋅ = ⋅ =

� �
� �
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Transforming Tangents
The following expression shows the effect of a affine 
transformation A on the tangent vector t1. 

( )1 1 1 0

11 12 13 14 14

21 22 23 24 24

31 32 33 34 34

, 

where 

0 0 0 1 0 0 0 1

t At A p p

a a a a a
a a a a A a

A
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Transforming Normals
This transformed tangent, t', must be perpendicular to the 
transformed normal n‘: 

Let's solve for the transformation matrix Q that preserves the 
perpendicular relationship.

In other words

For what matrices A’ , would Q= A’ ?

( )
T T T

1 1 1

T
1 1

,

then 0 iff  because 0. 

n t Qn A t n Q A t

n t Q A I n t

′ ′ ′ ′⋅ = =

′ ′ ′⋅ = = ⋅ =

� � �
� � �

� �
� �

n Qn′ =
� �

( )
T1 .Q A −′=
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Normals of Curved Surfaces
Not all surfaces are given as planar facets. A common example 
of such a surface a parametric surface. For a parametric 
surface the three-space coordinates are determined by 
functions of two parameters u and v.

The tangent vectors are computed with partial derivatives and 
the normal with a cross product:

( , )
( , ) ( , )

( , )

X u v
S u v Y u v

Z u v

 
 
 =
 
 
 

1 2 1 2, , 

X X
u v
Y Yt t n t t
u v

ZZ
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Normals of Curved Surfaces
Normals of implicit surfaces S are even simpler:

Why do partial derivatives of an implicit surface determine a 
normal (and not a tangent as for the parametric surface)?
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Next Time
Physically Based Illumination Models


