
1

Lecture 14 6.837 Fall 2001

Visibility – Part 2

Binary Space 
Partitioning Trees

Ray Casting

Depth Buffering

Lecture 14 Slide 2 6.837 Fall 2001

Visibility – Last Time
Back-Face Culling O(n)

Simple test based on the normal of each face:
� View-direction culling (computed after projection) 
� Oriented-face culling (computed at triangle set-up)
� Viewpoint culling (can be done anywhere)

Lecture 14 Slide 3 6.837 Fall 2001

Visibility – Last Time
Painters Algorithm O(n log n)

Sort triangles by their depth (min, max, centroid)
Subdivide cycle overlaps or intersecting triangles

Lecture 14 Slide 4 6.837 Fall 2001

Power of Plane Equations
We've gotten a lot of mileage out of one simple equation:

� 3D outcode clipping
� plane-at-a-time clipping

� viewpoint back-face culling 0

1

x y z

x
y

n n n d
z

 
 
 

   − =
   

 
 
 



2

Lecture 14 Slide 5 6.837 Fall 2001

One More Trick with Planes
Consider the complement argument of the viewpoint culling 
algorithm:

� Any facet that contains the eye point within its negative 
half-space is invisible. 

� Any facet that contains the eye point within its positive 
half-space is visible. 

Well almost... it would work if there were no overlapping 
facets. However, notice how the overlapping facets partition 
each other. Suppose we build a tree of these partitions.

Lecture 14 Slide 6 6.837 Fall 2001

Constructing a BSP Tree
The Binary Space Partitioning (BSP) algorithm:   
1.Select a partitioning plane/facet.
2.Partition the remaining planes/facets according 
to the side of the partitioning plane that they fall 
on (+ or -).
3.Repeat with each of the two new sets. 

Partitioning requires testing all facets in the 
active set to find if they lie entirely on the 
positive side of the partition plane, entirely on 
the negative side, or if they cross it. In the case 
of a crossing facet we clip it into two halves 
(using the plane-at-a-time clipping algorithm).

BSP Visualizer Applet

Lecture 14 Slide 7 6.837 Fall 2001

Computing Visibility with BSP trees
Starting from the root of the tree.

1. Classify viewpoint as being in the positive or 
negative half-space of our plane 

2. Call this routine with the opposite half-space
3. Draw the current partitioning plane 
4. Call this routine with the same half-space

Intuitively, at each partition, we first draw the stuff 
further away than the current plane, then we draw 
the current plane, and then we draw the closer 
stuff. BSP traversal is called a "hidden surface 
elimination" algorithm, but it doesn't really 
"eliminate" anything; it simply orders the drawing 
of primitive in a back-to-front order like the 
Painter's algorithm. 
BSP Visualizer Applet

Lecture 14 Slide 8 6.837 Fall 2001

BSP Tree Example
� Computing visibility or depth-sorting with BSP trees is both 

simple and fast.
� It resolves visibility at the primitive level.
� Visibility computation is independent of screen size
� Requires considerable preprocessing of the scene primitives
� Primitives must be easy to subdivide along planes
� Supports CSG

BSP Visualizer Applet



3

Lecture 14 Slide 9 6.837 Fall 2001

Pixel-level Visibility
Thus far, we've considered visibility at the level of primitives. 
Now we will turn our attention to a class of algorithms that 
consider visibility at the level of each pixel. 

Lecture 14 Slide 10 6.837 Fall 2001

Ray Casting
Cast a ray from the viewpoint through each pixel to find the 
closest surface

for (each pixel in image) {

compute ray for pixel
set depth = ZMAX
for (each primitive in scene) {

if (ray intersects primitive and

distance < depth) {

pixel = object color
depth = distance to object

}

}

}

Lecture 14 Slide 11 6.837 Fall 2001

Ray Casting
Pros:
� Conceptually simple
� Can take advantage of spatial coherence in scene
� Can be extended to handle global illumination 

effects (ex: shadows and reflectance)
Cons:
� Renderer must have access to entire model
� Hard to map to special-purpose hardware 
� Visibility determination is coupled to sampling 

Subject to aliasing
Visibility computation is a function of resolution

Lecture 14 Slide 12 6.837 Fall 2001

Depth Buffering
Project all primitives and update depth 
of each pixel

set depth of all pixels to ZMAX
for (each primitive in scene) {

determine pixels touched
for (each pixel in primitive) {

compute z at pixel
if (z < depth) {

pixel = object color
depth = z

}

}

}



4

Lecture 14 Slide 13 6.837 Fall 2001

Depth Buffer
Pros:
� Primitives can be processed immediately
� Primitives can be processed in any order

Exception: primitives at same depth

� Well suited to H/W implementation
� Spatial coherence

Incremental evaluation of loops

Cons:
� Visibility determination is coupled to sampling (aliasing)
� Requires a Raster-sized array to store depth
� Excessive over-drawing

Lecture 14 Slide 14 6.837 Fall 2001

What Exactly Gets Stored in a Depth Buffer?

Recall that we augmented our projection matrix to include a 
mapping for z values:

The perspective projection matrix preserves lines and planes:

max max

width near left width0 0
right left right left'

height near top height' 0 0
bottom top bottom top

'
far near far

0 0 1
far near far near

0 0 1 0

x w x
y w y
z w z

z z
w

 ⋅ − ⋅
 
 − −

    
   ⋅ − ⋅
   
  =  − −
   
   ⋅ − ⋅ ⋅
   
    − −

 
  








Lecture 14 Slide 15 6.837 Fall 2001

Interpolating Depth
Projection that preserves planes allows us to use the plane 
equation for interpolation.

Ax By C z′ ′ ′+ + =

0 0 0

1 1 1

2 2 2

1
1
1

z x y A
z x y B
z x y C

     ′
     
     ′ =
     
     ′

    

0 0 0( , , )x y z
2 2 2( , , )x y z

1 1 1( , , )x y z

� Solve the linear system for A, B, and C and use the values 
to interpolate the depth z’ at any point x’, y’.  

� Similar computations are also used for rasterization and 
color interpolation 

Lecture 14 Slide 16 6.837 Fall 2001

Monotonic Depth Values
We need to be careful when reading the values out of a depth-
buffer and interpolating them. Even though, our interpolated 
values of z lie on a plane, uniform differences in depth-buffer 
values do no correspond to a uniform differences in space:

( )
max maxfar ( near) far near

1
far near far near

z z zz
z z

 ⋅ ⋅ − ⋅ ′ = = −   ⋅ − −



5

Lecture 14 Slide 17 6.837 Fall 2001

Monotonic Depth Values
However, our z-comparisons will still work because this 
parameter mapping, while not linear, is monotonic. 
Note that when the z values are uniformly quantized the 
number of discrete discernable depths is greater closer to the 
near plane than near the far plane. Is this good? 

Lecture 14 Slide 18 6.837 Fall 2001

Next Time


