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Surface Modeling

Types: 
Polygon surfaces
Curved surfaces
Volumes

Generating models: 
Interactive 
Procedural
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Polygon Surfaces

Set of surface polygons that enclose an object interior
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Polygon Tables

We specify a polygon surface with a set of vertex coordinates 
and associated attribute parameters
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Curved Surfaces

� Implicit
Curve defined in terms of an implicit function:

f (x, y, z) = 0
� Parametric

Parametrically defined curve in three dimensions is given by three univariate 
functions:

Q(u) = (X(u), Y(u), Z(u))

Q(u) = (cos u, sin u) f(x, y) = x2+ y2 – 1 = 0

parametric            implicit
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Implicit vs. Parametric

Surface Display
�Parametric

Surface Intersections
� Implicit

Changing Topology
� Implicit

1 2( , , ) ( , , ) 0f x y z f x y z− =
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Parametric Example: Beziér Curves

We can generate points on the curve by repeated linear interpolation.
Starting with the control polygon (in red), the edges are subdivided (as noted in blue).  
These points are then connected in order and the resulting edges subdivided.  The 
recursion stops when only one edge remains.  This allows us to approximate the curve 
at multiple resolutions.

A Beziér curve can be defined in terms of a set of control points denoted in red.
Consider, for example, a cubic, or curve of degree 3:
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Beziér Patches

Control polyhedron with 16 points and the resulting 
bicubic patch:
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Example: The Utah Teapot

32 patches

single shaded patch

wireframe of the control points

Patch edges
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Subdivision of Beziér Surfaces

2                         8                       32                     128
triangles per patch

We can now apply the same basic idea to a surface, to yield increasingly accurate 
polygonal representations
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Deforming a Patch

�The net of control points 
forms a polyhedron in cartesian
space, and the positions of the 
points in this space control the 
shape of the surface.

�The effect of lifting one of the 
control points is shown on the 
right.
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Patch Representation vs. Polygon Mesh

It’s fair to say that a polygon is a simple and flexible building 
block. However, a parametric representation of an object has 
certain key advantages:
� Conciseness

� A parametric representation is exact and economic since it is 
analytical.  With a polygonal object, exactness can only be 
approximated at the expense of extra processing and database costs.

� Deformation and shape change
� Deformations of parametric surfaces is no less well defined than its 

undeformed counterpart, so the deformations appear smooth.  This is 
not generally the case with a polygonal object.
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Sweep Representations

Solid modeling packages often provide a number of construction techniques.  A good 
example is a sweep, which involves specifying a 2D shape and a “sweep” that moves the 
shape through a region of space.
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Constructive Solid-Geometry Methods (CSG)

Another modeling technique is to combine the volumes occupied by
overlapping 3D shapes using set operations.  This creates a new volume by 
applying the union, intersection, or difference operation to two volumes.

unionintersection difference
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A CSG Tree Representation
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Example Modeling Package: Alias Studio
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Volume Modeling
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Marching Cubes Algorithm

Extracting a surface from voxel data:

1. Select a cell
2. Calculate the inside/outside state of each vertex of the cell
3. Create an index
4. Use the index to look up the state of the cell in the case table (see next slide)
5. Calculate the contour location (via interpolation) for each edge in the case table
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Marching Cube Cases
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Extracted Polygonal Mesh
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Procedural Techniques: Fractals

Apply algorithmic rules to generate shapes
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Terrains

Midpoint Displacement

Example:

d

edge size random( 1,1)d = ⋅ −
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Example: L-systems

Biologically-motivated approach to modeling botanical 
structures
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Example of a complex L-system model
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Next Time


