
6.837 LECTURE 11
1. Clipping and Culling 2. Why Do We Clip?

3. What is Clipping? 4. Where do we Clip?

5. Trivial Rejection Clipping 6. Outcode Clipping

7. Outcode Clipping of Lines 8. Outcode Clipping of Triangles

9. Dealing with Crossing Cases 10. One-Plane-at-a-Time Clipping

11. Plane-at-a-Time Clipping 12. The Trick: Interpolating Parameters

13. Interpolating After Division 14. Recap of Plane-at-a-time Clipping

15. 2-D/3-D/Outcode Clipping Hybrids 16. Next Time

 Lecture 12 Outline 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/index.html [10/19/2001 10:05:03 AM]

Clipping and Culling

Trivial Rejection

Outcode Clipping

Plane-at-a-time
Clipping

Culling

 Lecture 11 Slide 1 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide01.html [10/19/2001 10:05:19 AM]

Why Do We Clip?
Clipping is a visibility preprocess. In real-world scenes clipping can remove a substantial

percentage of the environment from consideration.
●

Assures that only potentially visible primitives are
rasterized. What advantage does this have over

two-dimensional clipping. Are there cases where you have
to clip?

●

Clipping is an
important

optimization

Lecture 11 Slide 2 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide02.html [10/19/2001 10:05:21 AM]

What is Clipping?
Two views of clipping:

Clipping is a procedure for spatially
partitioning geometric primitives, according
to their containment within some region.
Clipping can be used to:

Distingish whether geometric primitivies
are inside or outside of a viewing frustum

❍

Distinguish whether geometric
primitivies are inside or outside of a
picking frustum

❍

Detecting intersections between
primitives

❍

1.

Clipping is a procedure for subdividing
geometric primitives. This view of clipping admits several other potential applications.

Binning geometric primitives into spatial data structures.❍

Computing analytical shadows.❍

Computing intersections between primitives❍

2.

Lecture 11 Slide 3 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide03.html [10/19/2001 10:05:22 AM]

Where do we Clip?
There are at least 3 different stages in the
rendering pipeline where we do various
forms of clipping. In the trivial rejection
stage we remove objects that can not be
seen. The clipping stage removes objects
and parts of objects that fall outside of
the viewing frustum. And, when
rasterizing, clipping is used to remove
parts of objects outside of the viewport.

 /*
 clip triangle's bounding box to raster
 */
 xMin = (xMin < 0) ? 0 : xMin;
 xMax = (xMax >= width) ? width - 1 : xMax;
 yMin = (yMin < 0) ? 0 : yMin;
 yMax = (yMax >= height) ? height - 1 : yMax;

Lecture 11 Slide 4 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide04.html [10/19/2001 10:15:54 AM]

Trivial Rejection Clipping
One of the keys to all clipping algorithms is the notion of half-space partitioning. We've seen this

before when we discussed how edge equations partition the image plane into two regions, one
negative the other non-negative. The same notion extends to 3 dimensions, but partitioning elements

are planes rather than lines.

The equation of a plane in 3D is given as:
If we orient this plane so that it passes through our viewing position and our look-at direction is
aligned with the normal. The we can easily partition objects into three classes, those behind our

viewing frustum, those in front, and those that are partially in both half-spaces. Click on the image
above to see examples of these cases.

Lecture 11 Slide 5 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide05.html [10/19/2001 10:15:58 AM]

Outcode Clipping
(a.k.a. Cohen-Sutherland Clipping)

The extension of plane partitioning to multiple planes,
gives a simple form of clipping called
Cohen-Sutherland Clipping. This is a rough approach
to clipping in that it only classifies each of it's input
primitives, rather than forces them to conform to the
viewing window.

A simple 2-D example is shown on the right. This
technique classifies each vertex of a primitive, by
generating an outcode. An outcode identifies the
appropriate half space location of each vertex relative
to all of the clipping planes. Outcodes are usually
stored as bit vectors.

By comparing the bit vectors from all of the vertices
associated with a primitive we can develop conclusions
about the whole primitive.

Lecture 11 Slide 6 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide06.html [10/19/2001 10:16:00 AM]

Outcode Clipping of Lines
First, let's consider line segments.

 if (outcode1 == 0 && outcode2 == 0) then
 line segment is inside
 else

 if
 (outcode1 & outcode2 ! = 0) then
 line segment is outside
 else
 don't know
 endif

Notice that the test cannot conclusively state whether the
segment crosses the clip region. This might cause some
segments that are located entirely outside of the clipping
volume to be subssequently processed. Is there a way to
modify this test so that it can eliminate these false
positives?

Lecture 11 Slide 7 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide07.html [10/19/2001 10:16:02 AM]

Outcode Clipping of Triangles

For triangles we need merely modify the tests so that all
vertices are considered:

 if (outcode1 == 0 &&
 outcode2 == 0 &&
 outcode3 == 0) then
 triangle is inside
 else
 if (outcode1 & outcode2 & outcode3 != 0) then
 triangle is outside
 else
 don't know
 endif
 endif

This form of clipping is not limited to triangles or convex
polygons. Is is simple to implement. But it won't handle all
of our problems...

Lecture 11 Slide 8 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide08.html [10/19/2001 10:16:04 AM]

Dealing with Crossing Cases
The hard part of clipping is handling objects and primitives that straddle clipping planes. In some

cases we can ignore these problems because the combination of screen-space clipping and outcode
clipping will andle most cases. However, there is one case in general that cannot be handled this

way. This is the case when parts of a primitive lies both in front of and behind the viewpoint. This
complication is caused by our projection stage. It has the nasty habit of mapping object in behind the

viewpoint to positions in front of it.
(Click above to see projection)

Lecture 11 Slide 9 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide09.html [10/19/2001 10:16:06 AM]

One-Plane-at-a-Time Clipping
(a.k.a. Sutherland-Hodgeman Clipping)

The Sutherland-Hodgeman triangle clipping algorithm uses a
divide-and-conquer strategy. It first solves the simple problem
of clipping a triangle against a single plane.

There are four possible relationships that a triangle can have
relative to a clipping plane as shown in the figures on the right.

Each of the clipping planes are applied in succession to every
triangle. There is minimal storage requirements for this
algorithm, and it is well suited to pipelining. As a result it is
often used in hardware implementations.

(Click on the image below to see the various clipping
cases for a single plane.)

Lecture 11 Slide 10 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide10.html [10/19/2001 10:16:08 AM]

Plane-at-a-Time Clipping
The results of Sutherland-Hodgeman clipping can get complicated very
quickly once multiple clip-planes are considered. However, the
algorithm is still very simple. Each clip plane is treated independently,
and each traingle is treated by on of the four cases mentioned
previously.

It is straightforward to extend this algorithm to 3D.

(Click on the image below to see
clipping againist multiple planes.)

Lecture 11 Slide 11 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide11.html [10/19/2001 10:16:10 AM]

The Trick: Interpolating Parameters
The complication of clipping is computing the new vertices. This process is greatly
simplified by using a canonical clipping volume. We mentioned in the last lecture that it is
often desireable to introduce an intermediate
coordinate frame in-between the eye space and the
viewport space. In the canonical space the
viewable region is projected into a volume that
ranges from -1 to +1 in all dimensions. Therefore,
in homogeneous coordinates, before the division
by w, coordinates in all dimensions range from -w
to +w.

After division Before Division (Homogenous)

The canonical space in homogenous coordinates has several advantages. It simplifies the
clipping test (all dimensions are compared against the w component of the vertex) and it is
the perfect place in the pipeline to transistion from a floating-point to a fixed-point
representation.

Lecture 11 Slide 12 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide12.html [10/19/2001 10:16:11 AM]

Interpolating After Division
Suppose a line between two points (x0, y0, z0) and (x1, y1, z1) crosses the left clipping plane (x =
-1). To clip the line, we have to find a point at the intersection between the clipping plane and the

line. A parametric representation of the x-coordinate is . As t varies

from 0 to 1 the parametric equation computes the x-coordinate of all points on the line. The calculate
the parameter t at the intersection with the clipping plane we solve the equation for t such that x=-1:

The coordinates y and z of the intersection point are computed by substituing this value of the
parameter t into the corresponding parametric equations:

Lecture 11 Slide 13 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide13.html [10/19/2001 10:16:15 AM]

Recap of Plane-at-a-time Clipping
Elegant (few special cases)●

Robust (handles boundary and edge conditions well)●

Well suited to hardware●

Canonical clipping makes fixed-point
implementations manageable

●

Hard to fix into O-O paradigm (Reentrant, objects
spawn new short-lived objects)

●

Only works for convex clippping volumes●

Often generates more than the minimum number of
triangles needed

●

Requires a divide per edge●

Advantages: Disadvantages:

Lecture 11 Slide 14 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide14.html [10/19/2001 10:16:16 AM]

2-D/3-D/Outcode Clipping Hybrids
Do we really need to implement 6 clipping planes?

Lecture 11 Slide 15 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide15.html [10/19/2001 10:16:18 AM]

Next Time

Lecture 11 Slide 16 6.837 Fall '01

Lecture 11 --- 6.837 Fall '01

http://graphics/classes/6.837/F01/Lecture11/Slide16.html [10/19/2001 10:16:20 AM]

	graphics
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01
	Lecture 11 --- 6.837 Fall '01

