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Line-Drawing Algorithms
A Study in Optimization
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Line-Drawing Algorithms

Qur first adventure into scan conversion.

e Scan-conversion or rasterization
« Due to the scanning nature of raster displays

« Algorithms are fundamental to both
2-D and 3-D computer graphics

« Transforming the continuous into this discrete
(sampling)

« Linedrawing was easy for vector displays

o Most incremental line-drawing algorithms
were first developed for pen-plotters

Most of the early scan-conversion algorithms devel oped
for plotters can be attributed to one man, Jack Bresenham.
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Quest for the Ideal Line

The best we can do is adiscrete approximation of an ideal line.

I:I' I:I 13 n =
Lis An "ideal" line

(e, ¥1)
A discrete approximation

|mportant line qualities:

= Continuous appearence

= Uniform thickness and brightness

= Accuracy (Turn on the pixels nearest the ideal line)
= Speed (How fast isthe line generated)
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SimpleLine

Based on the simple slope-intercept algorithm from algebra

y=mx+Db
public void lineSinple(int x0, int yO, int x1, int yl, Color
col or) {
I nt pix = color.get R&E();
int dx = x1 - XxO; 17N b )
int dy = yl - yO; 1 v
dy
raster. set Pi xel (pi x, x0, yO0); i
i f (dx I'=0) { m=a-
float m= (float) dy / (float) dx
float b = y0 - nrx0; =
= (x1 >x0) ?1: -1; 1
vvhile (x0 = x1) { . 5/ 1
X0 += dx; T
y0O = Mat h. round(nrx0 + b); 1
raster.setPi xel (pi x, x0, y0); v
}
}
}
- Daerw Lecture 4 Slide 4 6.837 Fall '01

http://www.graphics.lcs.mit.edu/classes/6.837/F01/Lecture04/Slide04.html [9/20/2001 5:29:43 PM]

Nexr»



Lecture 4 --- 6.837 Fall '01

lineSimple( ) Demonstration

Draw alineby clicking and dragging on the pixel grid shown with the left

mouse button. An ideal lineis displayed until the left button isreleased. The I I nes mpl e() method

Upon release a discrete approximation of thelineisdrawn on the display
grid using thelineSimple() method described in the previous slide. An
ideal lineisthen overlaid for comparison.

Does It work?

Try various slopes.

- DPaerw Lecture 4 Slide5 6.837 Fall '01
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Let's Make it Work!

Problem: lineSimple( ) does not give satisfactory results for slopes> 1

Solution: symmetry

public void linelnproved(int x0, int y0, int x1, int yl, Color color
int pix = col or.get RGB();

¥, Slope int dx = x1 - Xx0;
Greater int dy =yl - y0;
than I _ _
raster. setPi xel (pix, x0, y0);
d i f (Math.abs(dx) > Math. abs(dy)) { /'l slope <1
4 float m= (float) dy / (float) dx; /| conpute slope
float b = y0 - nrx0;
dx = (dx < 0) ? -1 : 1,
while (x0 I'= x1) {
e - x0 += dx;
iy raster.setPi xel (pi x, x0, Math.round(nmx0 + b));
}
x } else
() if (dy !'=0) { /1 slope >=1
float m= (float) dx / (float) dy; /'l conpute sl ope
Stope Less than 1 float b = x0 - nty0;

dy = (dy < 0) ? -1 : 1;

@ while (y0 !'=yl) {
"W" yo += dy;
raster.setPixel (pix, Math.round(myO + b), yO0);
FJ
>
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linelmproved( ) Demonstration

Draw alineby clicking and dragging on the pixel grid shown with the left

mouse button. An ideal lineis displayed until the left button isreleased. The I I nel mpr Ove(j() method

Upon release a discrete approximation of thelineisdrawn on the display
grid using the linel mproved() method described in the previous slide. An
ideal lineisthen overlaid for comparison.

Notice that the slope-intercept equation of the line is executed at each step of the inner loop.

- Paek Lecture4 Slide 7 6.837 Fall '01 Nesro
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Optimize Inner Loops

Optimize those code fragments where the algorithm spends most of its time.

« remove unnecessary method invocations

Often these fragments replace Mat h. round(ntx0 + b)

- with(int)(n*x0 + b + 0.5)
areinside | 00ps. Does this always work?

« useincremental calculations
Overall code organization:

Consider the expression

| i neMet hod( ) y = (int)(mx + b + 0.5)
{

/1 1. general set up _ o

/1 2. special case set up Thevalue of yisknown at Xy (i.e. itisyp + 0.5)

whi | e (notdone) { Future values of y can be expressed in terms of previous values

/1 3. inner |oop with a difference equation:
} } Yier =Yt m;
or
Yi+1 = Yi-m;
= Doey L ecture 4 Slide 8 6.837 Fall '01 Nesr o
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Modified Algorithm

This line drawing method is called a Digital Differential Analyzer or DDA for short.

public void lineDDA(int x0, int yO, int x1, int yl, Color color) {

Int pix = color.getRGB();

i nt dy yl - yO;

i nt dx x1 - xO;

float t = (float) 0.5;

raster. set Pi xel (pi x, x0, yO0);

i f (Math.abs(dx) > Math.abs(dy)) {
float m= (float) dy / (float) dx;

t += yO0,
dx = (dx <0) ? -1: 1;
m *= dx;
while (x0 !'= x1) {
X0 += dx;
t +=m
raster.setPi xel (pix, x0, (int) t);
} else {
float m= (float) dx / (float) dy;
t += xO0;
dy = (dy < 0) ? -1 : 1;
m *= dy;
while (y0 !'=yl) {
yo += dy;
t +=m
raster.setPixel (pix, (int) t, y0);
}
}
}
- Psex Lecture 4 Slide 9
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lineDDA () Demonstration

Draw aline by clicking and dragging on the pixel grid shown with the left .
mouse button. An ideal lineisdisplayed until theleft button isreleased. .
Upon release a discrete approximation of thellineisdrawn on the display The I I neD DA() mEthOd
grid using the lineDDA() method described in the previous slide. An ideal
lineisthen overlaid for comparison.

Y ou should not see any differencein
the lines generated by this method and the linel mproved( ) method
mentioned previoudly.

- Paek Lecture4 Slide 10 6.837 Fall '01 Nesro
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Was Our Objective Met?

Thisapplet above allows you to select from the variousline drawing . .
algorithmsdiscussed. You can draw lines using the selected algorithm by TO the I eft iIsa benChmarkl ng appl et

clicking and dragging with the first mouse button. You can also timethe
algorithms by clicking on Benchmark. In order to get more accurate
timingsthe pattern isdrawn five times (without clearing), and thefinal

result isdisplayed.

Modern compilers will often find these sorts of optimizations

Dilemma;

IS it better to retain readable code, and depend a compiler to do the optimization implicitly,

or code the optimization explicitly with some |loss in readability?

- Poew Lecture 4 Slide 11
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Low-Level Optimizations

L ow-level optimizations are dubious, because
they often depend on specific machine details.

However, a set of general rules that are more-or-less consistent across machines include:
o Addition and Subtraction are generally faster than Multiplication.
« Multiplication is generally faster than Division.
« Using tablesto evaluate discrete functions is faster than computing them
 Integer caluculations are faster than floating-point calculations.
« Avoid unnecessary computation by testing for various special cases.

o Theintrinsic tests available to most machines are greater than,
less than, greater than or equal, and less than or equal to zer o (not an arbitrary value).

& Dacy Lecture4 Slide 12 6.837 Fall '01 Nesro
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Applications of Low-level Optimizations

Notice that the slope is always rational (aratio of two integers).

m= (yl - y0) / (x1 - xO0)

Note that the incremental part of the algorthim never generates a new y that is more than one unit away from the old one
(because the slope is always less than one)

Yi+1 = Yy; tm

Thus, if we maintained the only the only fractional part of y we could still draw aline by noting when this fraction
exceeded one. If we initialize fraction with 0.5, then we will also handle the rounding correctly asin our DDA routine.

fraction += m
if (fraction >=1) { y =y + 1; fraction -=1; }

& Pnew Lecture4 Slide 13 6.837 Fall '01 Nesr o
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additions. Our next optimization will use three of the mentioned methods. It will remove floating-point calculationsin favor of integer operations, and it will remove the
single divide operation (it makes a difference on short lines), and it will normalize the tests to tests for zero.

http://www.graphics.Ics.mit.edu/classes/6.837/F01/Lecture04/Slide13.html (2 of 2) [9/20/2001 5:33:08 PM]
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Geometric Interpretation
fraction = 0.5; // Initid
fraction += m:; // Increment

If 0.5 <=m<=1thenfraction>=1

Plot(1,1)
If 0<m<0.5thenfraction< 1
Plot(1,0)
fraction += m
1 f (fraction >= 1) {
y =y + 1
fraction -= 1;
}
= Osek Lecture 4 Slide 13a 6.837 Fall ‘01 Near o
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More Low-level Optimizations

Note that y is how an integer.
Can we represent the fraction as an integer?

After we draw the first pixel (which happens outside our main loop) the correct fractionis:

fraction = 1/2 + dy/dx

If we scale the fraction by 2* dx the following expression results:

scal edFraction = dx + 2*dy

and the incremental update becomes:

scal edFraction += 2*dy )
2* dx* (dy/ dx)
and our test must be modified to reflect the new scaling
I f (scal edFraction >= 2*dx) { ... }
= Doey L ecture 4 Slide 14 6.837 Fall '01 Nesr o
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More Low-level Optimizations

This test can be made against avalue of zero if the inital value of scaledFraction has 2* dx
subtracted from it. Giving, outside the loop:

O f set Scal edFraction = dx + 2*dy - 2*dx =
2*dy - dx

and the inner loop becomes

O f set Scal edFracti on += 2*dy
| f (O fsetScal edFraction >= 0) {

y =y + 1
fraction -= 2*dx;

}

We might as well double the values of dy and dx (this can be accomplished with either an
add or a shift outside the loop).

= Psex Lecture 4 Slide 15 6.837 Fall ‘01 Nexr»
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The resulting method is known as Bresenham's line drawing algorithm

public void lineBresenhan(int x0, int yO, int x1, int yl, Color color) {
int pix = color.get RGB();
int dy =yl - yO0;
int dx = x1 - xO0;
int stepx, stepy;

if (dy < 0) { dy = -dy; stepy = -1; } else { stepy = 1; }
if (dx <0) { dx = -dx; stepx =-1; } else { stepx = 1; }
dy <<= 1; /1 dy is now 2*dy
dx <<= 1; /] dx is now 2*dx
raster. setPixel (pix, x0, y0);
if (dx > dy) {
int fraction = dy - (dx >> 1); /'l sanme as 2*dy - dx
while (x0 !'= x1) {
if (fraction >= 0) {
y0 += stepy;
fraction -= dx; /] sane as fraction -= 2*dx
}
x0 += stepx;
fraction += dy; /'l sanme as fraction -= 2*dy

raster. setPi xel (pi x, x0, y0);

} else {
int fraction = dx - (dy >> 1);
while (y0 !'=yl) {
if (fraction >= 0) {
X0 += stepx;
fraction -= dy;
}
y0 += stepy;
fraction += dx;
raster. setPi xel (pix, x0, y0);

Slide 16 6.837 Fall '01 Nesr o
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lineBresenham( ) Demonstration

Draw alineby clicking and dragging on the pixel grid shown with the left

mouse button. An ideal lineis displayed until the left button isreleased. The I I neBresenham() method

Upon release a discrete approximation of thelineisdrawn on the display
grid using thelineBresenham() method described in the previous slide. An
ideal lineisthen overlaid for comparison.

Does It work?

- DPaerw Lecture 4 Slide 17 6.837 Fall '01
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Was it worth 1t?

Thisapplet above allowsyou to select from the variousline drawing
algorithms discussed. You can draw linesusing the selected algorithm by

clicking and dragging with the first mouse button. You can also timethe TO the Ieft IS a benChmarkl ng appl et

algorithms by clicking on Benchmark. In order to get more accurate
timingsthe pattern isdrawn five times (without clearing), and thefinal
result isdisplayed.

™ Pnex Lecture 4 Slide 18
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Question Infrastructure

Thereis still a hidden multiply inside of our inner loop

/**
* Sets a pixel to a given val ue
*/
public final boolean setPixel(int pix, int x, int vy)
{
pi xel [y*w dt h+x] = pi Xx;
return true;
}
Our next optimization of Bresenham's algorithm
eliminates even this multiply.
™ Poew Lecture 4 Slide 19 6.837 Fall '01
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Faster Bresenham Algorithm

public void lineFast(int x0, int yO, int x1, int yl, Color color) {
int pix = color.get RGB();
int dy =yl - yO0;
int dx = x1 - xO0;
int stepx, stepy;
i
i

int width = raster.getWdth():

int pixel = raster.getPixelBuffer();

if (dy < 0) { dy = -dy; stepy = -width; } else { stepy = -width; }
if (dx < 0) { dx = -dx; stepx = -1; } else { stepx = 1; }

dy <<= 1,

dx <<= 1;

y0 *= wi dth;

yl *= width;

pi xel [ xO+y0] = pi x;

if (dx > dy) {

int fraction = dy - (dx >> 1);
while (x0 !'= x1) {
if (fraction >= 0) {
y0 += stepy;
fraction -= dx;
}
x0 += stepx;
fraction += dy;
pi xel [ xO+y0] = pix;

} else {
int fraction = dx - (dy >> 1);
while (y0 !'=yl) {
if (fraction >= 0) {
X0 += stepx;
fraction -= dy;
}
y0 += stepy;
fraction += dx;
pi xel [ xO+y0] = pi x;

Slide 20 6.837 Fall '01 Nesr o
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Was it worth 1t?

This applet above allows you to select from the various line drawing TO the |eft |S a. benChmarkl ng appl et

algorithms discussed. You can draw lines using the selected algorithm by
clicking and dragging with the first mouse button. Y ou can also time the
algorithms by clicking on Benchmark. In order to get more accurate
timingsthe pattern isdrawn five times (without clearing), and the final

sl Can we go even faster?

- DPaerw Lecture 4 Slide 21
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Most books would have you believe that the devel opment

of line drawing algorithms ended with Bresenham's
famous algorithm. But there has been some signifcant
work since then. The following 2-step algorithm,
developed by Xiaolin Wu, isagood example. The
Interesting story of this algorithm's development is

discussed in an article that appears in Graphics Gems | by

Brian Wyvill.

The two-step algorithm takes the interesting approach of

treating line drawing as a automaton, or finite state

machine. If one looks at the possible configurations that
the next two pixelsof aline, it is easy to see that only a

finite set of possiblities exist.

The two-step algorithm also exploits the symmetry of

line-drawing by simultaneously drawn from both ends

towards the midpoint.

The code, which is here, isabit long to show an adlide.
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Was it worth 1t?

Note: Compare the speed of lineBresenham( ) to
lineTwoStep( ). This comparision is most fair since
| did not remove the calls to raster.setPixel() in the

two-step algorithm.

Hardly!

= Doey L ecture 4 Slide 23 6.837 Fall '01 Nesro
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Epilogue

There are still many important issues associated with line drawing

Examples:

« Non-integer endpoints
(occurs frequently when rendering 3D lines)

o Can we make lines appear less "jaggy"?

o What if aline endpoint lies outside the viewing area?
o How do you handle thick lines?

o Optimizations for connected line segments

o Linesshow up in the strangest places

- DPaerw Lecture 4 Slide 24 6.837 Fall '01
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A Linein Sheep's Clothing

Movies developed for theaters are usually shot at 24 frames per second, while video on
television is displayed at 30 frames per second. Thus, when motion pictures are transferred
to video formats they must undergo a process called "3-2 pull-down", where every fourth

frame is repeated thus matching the frame rates of the two media, as depicted below.

- Pnew
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The Plot Thickens...

Once upon atime, there was a company with asimilar, yet more complicated problem.
They had developed a multimedia movie-player technology that they wished to display
on aworkstation's CRT screen. They also made screens with various update rates
including 60, 66, 72, and 75 frames-per-second. Their movie player had to support a
wide range of source materialsincluding, but not limited to:

’Source |Frame Rate

’Motion Pictures ’24fps
’NTSC Video (frames) ’30fps
’NTSC Video (fields) ’60fps
]PAL Video (frames) |25fps
’PAL Video (fields) ]50fps
’Common Multimedia ’10 fps

These source materials were to be displayed as close as possible to the correct frame rate.
We were not expected to support frame rates higher than the CRT's update rate. Upon
having the problem explained, someone commented, "It's just aline-drawing algorithm!"
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Generalized Pull Down

The generalized pull-down problem is nothing more that drawing the best discrete
approximation of theideal line from (1, 1) to (desired frame rate, source frame rate), as
shown in the following diagram for the (30 fps, 24 fps).
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Frame i
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________________________________________ A O
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1 oo® |
i‘ '
o"'
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o
. ‘"“ i
b .i i Destination
o7 E Frame
' |
@ ' Rate
et

Moreover, it isavery special case of aline. Can you think of addition optimizations to our
Bresenham line drawing code that could be applyed for the special case of pull-down?
& Psex Lecture4 Slide 27 6.837 Fall '01 Nesro

http://www.graphics.lcs.mit.edu/classes/6.837/F01/Lecture04/Slide27.html [9/20/2001 5:35:08 PM]



Lecture 4 --- 6.837 Fall '01

Next Time
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